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Abstract  
 This paper presents an overview of different approaches to a creation 
of the technique of  software application development   based on the 
integrated        development environment which  contains a model and tools 
for its      implementation.  Our results  in this field are also presented. We 
study a formal model specification and analysis tools which  may have  
potential for the software  application development. 
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Introduction  
 Software systems have significantly increased in complexity and 
diversity in    recent years, requiring the use of new, more efficient 
technological tools for their development. Traditional tools based only on 
programmer‘s intuition cannot guaranty high reliability in software products 
and do not allow their complete analysis. These problems can be solved 
using formal mathematical models which provide a rigorous approach to the 
software development. However, the experience of software            
development shows that the use of formal methods in the design of software 
systems often leads to cumbersome constructions which cause a serious 
obstacle to the   development process. It follows that we need to create an 
appropriate conceptual apparatus which will make these formal methods 
more applicable to software   development in practice. In this paper we study 
different formal tools and methods which could be useful to apply to 
software application development. 
 
The formal tools for the software models  
 The strongly held common philosophy of the current state of software       
engineering in 1970s is admirably expressed in the following quotation from      
professor Christopher Strachey, the founder of the  Programming Research 
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Group which represents a part of the Computing    Laboratory at Oxford 
University (“History and Structure”,  2007, “Undergraduate handbook”, 
2007,  Hoare, 1982): “It has long been my personal view that the separation 
of practical and     theoretical work is artificial and injurious. Much of the 
practical work done in computing, both in software and in hardware design, 
is unsound and clumsy   because the people who do it have not any clear 
understanding of the   fundamental design principles of their work. Most of 
the abstract mathematical and theoretical work is sterile because it has no 
point of contact with real     computing. One of the central aims of the 
Programming Research Group as a teaching and research group has been to 
set up an atmosphere in which this separation cannot happen.” If we consider 
this statement from today’s perspective we can see that the gap        between   
theory   and practice in the field of software engineering has not only     
become   larger but has   in fact increased significantly. However what 
reasons would have caused   this? There are   many   reasons; among them 
the following seem to be significant:     
 - most software developers rely on their intuition and experience, 
ignoring formal methods  and tools in the software development process;                                               
- despite many theoretical works having appeared recently in the software    
engineering, the  appropriate formal tools continue to be inadequate for their 
application to the practice of  software engineering. 
 Next, we will consider some of the formal tools and methods which 
could be    useful in   software engineering.                                                                                             
 Hoare logic  is a formal system   with a set of logical rules for 
reasoning rigorously about the correctness of computer   programs   
(Hoare,1982, Hoare,1969). It was proposed in 1969 by the Oxford professor 
C.A.R. Hoare. The central feature of   Hoare logic is   the Hoare triple. A 
triple describes how the    execution of a piece of code   changes   the state of 
the      computation. A Hoare triple is of the form {S} P {S’} where S and S’ 
are assertions and P is   a command. S is named the precondition and   S‘    
the   postcondition: when the precondition is   met, executing the command 
establishes the postcondition. Assertions are formulae in   predicate logic. 
Based on this logic Hoare formally defined basic programming 
constructions.  For example: if b then P else Q =  ( Db)∨ (b&P) ∨ ( b&Q), 
where Db  is a definition domain of logical expression b, P and Q are the 
predicates defining     specifications  of the  corresponding programming 
constructions. This formal system can be useful in the   transformational 
programming technique (Georgiev , Enikeev, 1992). Program transformation 
is the process of   converting one program to another using the      
appropriate            transformational rules    which can   be   deduced and 
proved on the    base of Hoare logic. Transformational   programming   
technique used to be    applied to code     optimization and program    
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generators. Code optimization is a   transformation of source code into a 
simpler    and more efficient code using the appropriate    transformational 
rules. The greatest effect is achieved by automating  the process   of  
transformation. Here is   an example of the  transformational  rule:            
while i<n do i:=i+1 = if  i<n then i:=n.    Program generators provide 
automated source code creation from generic frames, classes, prototypes and   
templates to improve the productivity of software development.  This   
technique is often related to code-reuse topics such as   component-based 
software     engineering and product family engineering. In this case the 
transformational rules are   represented by   substitution rules. One of the 
most interesting fields of   the transformational     programming technique is  
partial   evaluations (mixed computations) concerning   automatic compiler 
generation from an     interpretive definition of a programming language  
(Ershov, 1982). The technique also has   important applications in scientific 
computing, logic programming,  metaprogramming, and  expert systems.       

The theory of communicating sequential processes (CSP)   
(Hoare, 1985) is a formal   system, which, by using the conceptualization of 
sequential processes, enables the specification and analysis of various 
patterns of communication between processes (including parallelism). In the 
next part of the paper we present a study of CSP tools   based on  the  
example  of   a menu  - select interactive system model specification              
( Enikeev,  Hoare, Teruel, 1987). The behavior of a menu –select interactive 
system can be modeled as a set of sequences of possible responses. This 
allows the description of the menu-select interactive system model using 
CSP theory. In CSP notation these sequences are called traces. A trace is a 
finite sequence of symbols recording the actual or potential behavior of a 
process from its beginning up to some moment of time. Each symbol denotes 
a class of events in which a process can participate. The set of symbols 
denoting events in which a     process can participate defines the alphabet of 
a process. A process is defined by the set of all traces of its possible 
behavior. From the definition of a trace, it follows that; process P with 
alphabet A: 
 P0.  P⊆ A*, where A*denotes the set of all traces with symbols from 
a pre-defined alphabet A;   
 P1. <> ∈  P, where  <> denotes an empty trace; 
 P2. st ∈  P =>  s ∈  P , for all st ∈  A *,where st is the concatenation 
of s        with t.                                                                                                               
Below we present some important definitions from CSP that will be used               
subsequently. If s is a nonempty trace, we define s0 as its first symbol, and s’ 
as the result of removing the first symbol from s. Let √ be a symbol denoting 
successful termination of   the process. As a result, this symbol can appear 
only at the end of a trace. Let t be a trace recording a   sequence of events 
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which start when s has been successfully terminated. The composition of   s 
and t is denoted (s; t). If √ does not occur in s, then t cannot start. If s is a 
copy of an initial subsequence of t, it is possible to find some extension u of 
s such that su = t . We therefore define an ordering     relation                         
s ≤ t = df ∃ u (su=t ) and say that  s  is a prefix of t . For example,             
<x,y> ≤ <x, y, z> , <> < <x, y> .   The ≤ relation is a partial ordering, and its 
smallest element is <>.     The expression (t  A) denotes the trace t when 
restricted to symbols in the set  A; it is formed from t simply by omitting all 
symbols outside A. For example,   <a, d , c, d>    {a,c} =<a, c> .  The 
expression P0 denotes the set of first symbols of all traces in process P (initial 
state    of    process P). To put it      formally:  P0 = df { c | < c > ∈   P }.        
Process FAIL = df {<>}, which does nothing, process SKIP = df {<>, <√ >}, 
which  also  does nothing, but unlike FAIL it always terminates successfully. 
Let x be an event and let P be a process. Then (c → P) (called ‘c then P’) 
describes an   object which first engages in the event c and then behaves 
exactly as described by P. The   process (c → P) is defined to have the same 
alphabet as P; more formally,   (c → P) = df {c→ s | c ∈  αP & s ∈  P  }, 
where c→ s = df  < c > s, αP denotes an alphabet of   process P.  Let P be a 
process and s ∈  P   then P / s          (P after s) is a process which behaves the 
same   as  P behaves from the time after P has engaged in all the actions 
recorded in the trace s. If s ∉ P, P / s is not defined; more formally, P / s = df 
{t | st ∈  P}. Let P and Q be processes. The operation P | Q is defined as 
following:                    P | Q = df  P ∪ Q , where  α (P | Q ) = αP ∪  αQ  (the 
choice between P and Q). The choice depends on which event from (P | Q)0  
occurs. For   example, if R= (a → P) | (b →Q), R/<a> =P and R/< b > = Q. 
Let P and Q be         processes. Sequential composition P; Q is defined as a 
process which first behaves like P; but when P terminates successfully, (P; 
Q) continues by behaving as Q. If P never terminates successfully, neither 
does (P;Q). More formally,  P;Q = df { s;t | s ∈  P & t ∈  Q }. Let P and Q be 
processes. The operation of parallel composition P || Q is defined as 
following:                      P || Q ={s | s∈ (αP ∪  αQ)* & s   αP ∈  P & s   αQ 
∈  Q}, where (αP ∪  αQ)* is a set of  all possible traces from the alphabet   
(αP ∪  αQ).                                 
 In CSP a menu select interaction can be specified as communicating 
process P. The initial   menu, with a set of events, is displayed on the screen, 
represented as P0. After the user has  selected one of these events, say  x        
(x∈ P0), the subsequent  interaction is defined by P/< x.> (P after x), i.e.        
(P/< x.>) 0… . 

Example1.       
P0={ a, b}, P/< a > = P a ,P/< b > = P b , P= a-> P a |  b-> P b 
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Figure 1. 

 A set of menus and interactive prompt representations are provided 
for a set of functions logically used together. Each symbol in the menu 
denotes a function,     invoked after the user’s selection. We will make a 
distinction between the commonly used functions, controlling the interaction 
process, and the problem dependent     functions, the choice of which can be 
defined depending on the particular sort of     problems. The most typical 
commonly used functions of the menu-select interaction are the following: 
 (1)    functions for terminating or quitting a process; 
 (2)    functions   allowing the return to any of the previous steps. 
 The main objective of this paper is the specification of an abstract 
menu-select   interaction on the basis of CSP, concentrating our attention on 
these three commonly used function types. In greater detail, these functions 
are; 
 (1)      ‘stop’ – to terminate or quit a process; 
 (2)      2.1. ‘reset’ – to start again from the beginning of a process; 
           2.2. ‘back’  - to undo the most recent action in a process; 
 The model of a menu-select interactive system is based on the 
specification of these functions, which can be described in CSP. But CSP 
facilities are not enough to describe a menu-select interaction model 
completely. Therefore we need to extend CSP facilities with new processes 
which define the above mentioned functions. For a definition of the 
appropriate processes we will use a derivative definition, defining a process 
P by two objects: a set I, defining the initial  state  of  process P , i.e.  P0 and          
a function mapping each member ‘c’ of I into a process,  defining the       
subsequent behavior of  P, i.e. P/<c>.  If P is a process, let’s define the 
following processes:                 
 
Stoppable(P).                                                                                                                                    
 Let ‘stop’ be a symbol not in the alphabet αP. Then the process 
stoppable (P) can be defined as a process which behaves like P, except that                      
(1) ‘stop’ is in its alphabet;                                                                                                        
(2)  ‘stop’ is in every menu of  stoppable (P);                                                                   
(3)  when  ‘stop’ occurs, stoppable (P) terminates successfully.                                         
For example:   <a, b, c, stop, √ > ∈  stoppable (P)  <a, b, c> ∈  P, where 
symbol √denotes the event of a successful termination of the process.                             
Definition 1.                                                                                                                              
stop∉ αP& (stoppable(P))0 = P0 ∪ {stop} &                                                                               



European Scientific Journal October 2015 /SPECIAL/ edition Vol.2   ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 
 

29 

                                        SKIP, if x=stop 
(stoppable(P))/<x>= {                                     

                        stoppable(P/x), if x ≠ stop 
Example 2. 

 
Figure 2. 

 
Resettable (P). 
 Let ‘reset’ be a symbol not in the alphabet αP. Define ‘resettable (P)’ 
as a  process that behaves like P, except that                                                      
(1) ‘reset’ in its  alphabet;                                                                                                        
(2) ‘reset ‘ is in every menu of  resettable (P);                                                                             
(3) when  ‘reset’ occurs, resettable (P) starts again from the beginning.                
For example: <a, b, reset, c, d>∈  resettable(P)  <a, b>∈  P & <c, d> ∈  P. 
 Definition 2.                                                                                                                 
reset∉αP& resettable(P) =start(P,P), where 

 (start(P,Q))0 = P0 ∪ {reset} & 
                                   start(Q, Q), if x=reset 

     (start(P,Q))/<x>= {                                     
                       start(P/x, Q), if x ≠ reset 
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Example 3. 

 
Figure 3. 

 
Backtrackable (P).                                                                                                                          
 Let ‘back’ be a symbol not in the alphabet αP. Define 
backtrackable(P) as a    process that behaves like P, except that                                                                                                
(1)  ‘back’ in its  alphabet;                                                                                                   
(2)  ‘back’is in every menu of  backtrackable (P);                                                                           
(3)   backtrackable (P)/s<x,back> = backtrackable (P)/s  provided x ≠ ‘back’. 
 The intention is that ‘back’ will cancel the effect of the most recent 
action which has not already been cancelled (other than ‘back’ itself). For 
example: <a, b, back,  d>∈  backtrackable (P)  < a, d >∈  P,  <a, b, c, 
back, back, d>∈  backtrackable (P)  < a, d >∈  P                                                                   
Definition 3.                                                                                                                           
back∉ αP& backtrackable(P) =recover(P,P), where 

(recover(P,Q))0 = P0 ∪ {back} & 
                                        Q, if x=back 

     (recover(P,Q))/<x>= {                                     
                                        recover(P/x, recover(P,Q)), if x ≠ back     
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Example 4 

 
Figure 4. 

 
 The above sited definitions can be adequately implemented in the 
form of  recursively   defined functions or procedures. CSP theory permits 
the creation of models   for a variety of software applications and is 
especially appropriate for those that are based on an event-driven 
programming paradigm. This paradigm is widely used in the majority of 
object –oriented programming systems. The evolution of the object-oriented 
programming technique led to the appearance of the CSP-OZ theory, which 
is   based on a combination of CSP and the object-oriented specification 
language Object-Z (Fischer, 1997, Duke, 1995). This theory provides a 
specification of the behavior of     communicating processes and, in addition 
to CSP it permits the description of object-oriented models. Materials 
concerning the application of CSP-OZ theory  to the   development of   
information  systems have been published in a  monograph (Enikeev, 
Benduma, 2011).                                                                
            OCCAM is a concurrent programming language that builds on 
Communicating   Sequential Processes (CSP)  and shares many of its 
features. It was developed as  the  programming  language for the transputer 
microprocessors, although implementations for other platforms are available 
(Roscoe, 1986, Inmos Limited Prentice-Hall,1984). The example of the 
OCCAM   program is: 
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An analog volume control of a digital radio 

 
 As an example, a digital radio replaces an analog volume control with 
two buttons, one marked “louder”, the other marked “softer”. These buttons 
are   connected to two channels, “louder” and “softer” respectively, and 
whenever    either button   is pressed it causes a message to be sent along the 
corresponding channel. By pressing the buttons we may increase or decrease 
the volume, the value of which is transmitted to the amplifier. Here 
SEQ(P,Q) denotes P;Q, chan?var is an input of a value from the channel 
chan into the variable var, chan!expr is an output of the value of the 
expression expr to the channel chan,  alter(P,Q) is P | Q (alternative 
processes).                                                                                                         
 Model-driven engineering (MDE) is a software development 
methodology which focuses on creating and exploiting domain models (that 
is,  abstract   representations of the knowledge and activities that govern a 
particular domain of application) [Meyer,1997, Swithinbank, Chessell, 
Gardner,  Griffin,  Man, Wylie, Yusuf, 2005, E. Gamma, R. Helm, R. 
Johnson, and J. Vlissides, 1994). The first project  to support MDE were the 
Computer-Aided Software Engineering (CASE) tools developed in the 1980s 
(Rational Software Corporation, Rational Rose,2001, Hubert,  Johnson, 
Wilkinson, 2003).        Companies like    Integrated Development    
Environments (IDE - StP), Higher Order Software (now Hamilton 
Technologies, Inc., HTI), Cadre Technologies,   Bachman Information    
Systems, and Logic Works (BP-Win and ER-Win) were  pioneers in the 
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field. Several variations of the modeling definitions (see Booch, Rumbaugh,         
Jacobson, Gane and Sarson, Harel, Shlaer and Mellor, and others) were 
eventually combined to create the Unified Modeling Language (UML). 
Rational Rose, a product for UML   implementation, was made by Rational 
Corporation ( Larman, 2004). UML     language   representing  a high level 
of model-driven engineering approach provides the        possibility of 
software application development using special diagrams ( see figure 5 
below). 

 
Figure 5. 

The advantages of UML 
• UML is an object-oriented language, therefore  the  methods of 
describing the results of the analysis and design are semantically similar to 
the methods of programming in modern object-oriented languages; 
• UML permits the description of the system from any possible point 
of view and with different aspects of system behavior; 
•      UML diagrams are relatively easy to learn;      
•      UML permits the definition of new text and image stereotypes; 
•      UML is widely used and is currently being intensively developed. 
The disadvantages of UML 
• superfluity of language; 
• ambiguous semantics; 
• Trying to be everything to everyone;  
 
Conclusion 
 This paper presents an overview of formal tools for a creation of 
mathematical software models which may be useful in the  software 

http://www.amazon.com/Craig-Larman/e/B000APVUN6/ref=dp_byline_cont_book_1
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engineering.      Despite many theoretical works having recently appeared in 
software engineering, the problem of their application to software 
engineering continues to be crucial. One of the most promising ways of 
solving the problem is to train professionals who combine practical 
experience in software engineering with an appropriate mathematical    
background.  In addition to this we need to create new technological tools 
based on an optimal combination of developer intuition and a formal,       
rigorous approach to the software development process. 
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