
European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

24

ON FORMAL TOOLS IN THE SOFTWARE
ENGINEERING

Arslan Enikeev, PhD
Mahfoodh Bilal Ahmed Mohammed, MSc

Elina Stepanova, MSc
Kazan Federal University, Russian Federation

Abstract
 This paper presents an overview of different approaches to a creation
of the technique of software application development based on the
integrated development environment which contains a model and tools
for its implementation. Our results in this field are also presented. We
study a formal model specification and analysis tools which may have
potential for the software application development.

Keywords: Formal specifications, model, CSP, UML

Introduction
 Software systems have significantly increased in complexity and
diversity in recent years, requiring the use of new, more efficient
technological tools for their development. Traditional tools based only on
programmer‘s intuition cannot guaranty high reliability in software products
and do not allow their complete analysis. These problems can be solved
using formal mathematical models which provide a rigorous approach to the
software development. However, the experience of software
development shows that the use of formal methods in the design of software
systems often leads to cumbersome constructions which cause a serious
obstacle to the development process. It follows that we need to create an
appropriate conceptual apparatus which will make these formal methods
more applicable to software development in practice. In this paper we study
different formal tools and methods which could be useful to apply to
software application development.

The formal tools for the software models
 The strongly held common philosophy of the current state of software
engineering in 1970s is admirably expressed in the following quotation from
professor Christopher Strachey, the founder of the Programming Research

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

25

Group which represents a part of the Computing Laboratory at Oxford
University (“History and Structure”, 2007, “Undergraduate handbook”,
2007, Hoare, 1982): “It has long been my personal view that the separation
of practical and theoretical work is artificial and injurious. Much of the
practical work done in computing, both in software and in hardware design,
is unsound and clumsy because the people who do it have not any clear
understanding of the fundamental design principles of their work. Most of
the abstract mathematical and theoretical work is sterile because it has no
point of contact with real computing. One of the central aims of the
Programming Research Group as a teaching and research group has been to
set up an atmosphere in which this separation cannot happen.” If we consider
this statement from today’s perspective we can see that the gap between
theory and practice in the field of software engineering has not only
become larger but has in fact increased significantly. However what
reasons would have caused this? There are many reasons; among them
the following seem to be significant:
 - most software developers rely on their intuition and experience,
ignoring formal methods and tools in the software development process;
- despite many theoretical works having appeared recently in the software
engineering, the appropriate formal tools continue to be inadequate for their
application to the practice of software engineering.
 Next, we will consider some of the formal tools and methods which
could be useful in software engineering.
 Hoare logic is a formal system with a set of logical rules for
reasoning rigorously about the correctness of computer programs
(Hoare,1982, Hoare,1969). It was proposed in 1969 by the Oxford professor
C.A.R. Hoare. The central feature of Hoare logic is the Hoare triple. A
triple describes how the execution of a piece of code changes the state of
the computation. A Hoare triple is of the form {S} P {S’} where S and S’
are assertions and P is a command. S is named the precondition and S‘
the postcondition: when the precondition is met, executing the command
establishes the postcondition. Assertions are formulae in predicate logic.
Based on this logic Hoare formally defined basic programming
constructions. For example: if b then P else Q =  (Db)∨ (b&P) ∨ ( b&Q),
where Db is a definition domain of logical expression b, P and Q are the
predicates defining specifications of the corresponding programming
constructions. This formal system can be useful in the transformational
programming technique (Georgiev , Enikeev, 1992). Program transformation
is the process of converting one program to another using the
appropriate transformational rules which can be deduced and
proved on the base of Hoare logic. Transformational programming
technique used to be applied to code optimization and program

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

26

generators. Code optimization is a transformation of source code into a
simpler and more efficient code using the appropriate transformational
rules. The greatest effect is achieved by automating the process of
transformation. Here is an example of the transformational rule:
while i<n do i:=i+1 = if i<n then i:=n. Program generators provide
automated source code creation from generic frames, classes, prototypes and
templates to improve the productivity of software development. This
technique is often related to code-reuse topics such as component-based
software engineering and product family engineering. In this case the
transformational rules are represented by substitution rules. One of the
most interesting fields of the transformational programming technique is
partial evaluations (mixed computations) concerning automatic compiler
generation from an interpretive definition of a programming language
(Ershov, 1982). The technique also has important applications in scientific
computing, logic programming, metaprogramming, and expert systems.

The theory of communicating sequential processes (CSP)
(Hoare, 1985) is a formal system, which, by using the conceptualization of
sequential processes, enables the specification and analysis of various
patterns of communication between processes (including parallelism). In the
next part of the paper we present a study of CSP tools based on the
example of a menu - select interactive system model specification
(Enikeev, Hoare, Teruel, 1987). The behavior of a menu –select interactive
system can be modeled as a set of sequences of possible responses. This
allows the description of the menu-select interactive system model using
CSP theory. In CSP notation these sequences are called traces. A trace is a
finite sequence of symbols recording the actual or potential behavior of a
process from its beginning up to some moment of time. Each symbol denotes
a class of events in which a process can participate. The set of symbols
denoting events in which a process can participate defines the alphabet of
a process. A process is defined by the set of all traces of its possible
behavior. From the definition of a trace, it follows that; process P with
alphabet A:
 P0. P⊆ A*, where A*denotes the set of all traces with symbols from
a pre-defined alphabet A;
 P1. <> ∈ P, where <> denotes an empty trace;
 P2. st ∈ P => s ∈ P , for all st ∈ A *,where st is the concatenation
of s with t.
Below we present some important definitions from CSP that will be used
subsequently. If s is a nonempty trace, we define s0 as its first symbol, and s’
as the result of removing the first symbol from s. Let √ be a symbol denoting
successful termination of the process. As a result, this symbol can appear
only at the end of a trace. Let t be a trace recording a sequence of events

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

27

which start when s has been successfully terminated. The composition of s
and t is denoted (s; t). If √ does not occur in s, then t cannot start. If s is a
copy of an initial subsequence of t, it is possible to find some extension u of
s such that su = t . We therefore define an ordering relation
s ≤ t = df ∃ u (su=t) and say that s is a prefix of t . For example,
<x,y> ≤ <x, y, z> , <> < <x, y> . The ≤ relation is a partial ordering, and its
smallest element is <>. The expression (t A) denotes the trace t when
restricted to symbols in the set A; it is formed from t simply by omitting all
symbols outside A. For example, <a, d , c, d>  {a,c} =<a, c> . The
expression P0 denotes the set of first symbols of all traces in process P (initial
state of process P). To put it formally: P0 = df { c | < c > ∈ P }.
Process FAIL = df {<>}, which does nothing, process SKIP = df {<>, <√ >},
which also does nothing, but unlike FAIL it always terminates successfully.
Let x be an event and let P be a process. Then (c → P) (called ‘c then P’)
describes an object which first engages in the event c and then behaves
exactly as described by P. The process (c → P) is defined to have the same
alphabet as P; more formally, (c → P) = df {c→ s | c ∈ αP & s ∈ P },
where c→ s = df < c > s, αP denotes an alphabet of process P. Let P be a
process and s ∈ P then P / s (P after s) is a process which behaves the
same as P behaves from the time after P has engaged in all the actions
recorded in the trace s. If s ∉ P, P / s is not defined; more formally, P / s = df
{t | st ∈ P}. Let P and Q be processes. The operation P | Q is defined as
following: P | Q = df P ∪ Q , where α (P | Q) = αP ∪ αQ (the
choice between P and Q). The choice depends on which event from (P | Q)0
occurs. For example, if R= (a → P) | (b →Q), R/<a> =P and R/< b > = Q.
Let P and Q be processes. Sequential composition P; Q is defined as a
process which first behaves like P; but when P terminates successfully, (P;
Q) continues by behaving as Q. If P never terminates successfully, neither
does (P;Q). More formally, P;Q = df { s;t | s ∈ P & t ∈ Q }. Let P and Q be
processes. The operation of parallel composition P || Q is defined as
following: P || Q ={s | s∈ (αP ∪ αQ)* & s  αP ∈ P & s  αQ
∈ Q}, where (αP ∪ αQ)* is a set of all possible traces from the alphabet
(αP ∪ αQ).
 In CSP a menu select interaction can be specified as communicating
process P. The initial menu, with a set of events, is displayed on the screen,
represented as P0. After the user has selected one of these events, say x
(x∈ P0), the subsequent interaction is defined by P/< x.> (P after x), i.e.
(P/< x.>) 0… .

Example1.
P0={ a, b}, P/< a > = P a ,P/< b > = P b , P= a-> P a | b-> P b

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

28

Figure 1.

 A set of menus and interactive prompt representations are provided
for a set of functions logically used together. Each symbol in the menu
denotes a function, invoked after the user’s selection. We will make a
distinction between the commonly used functions, controlling the interaction
process, and the problem dependent functions, the choice of which can be
defined depending on the particular sort of problems. The most typical
commonly used functions of the menu-select interaction are the following:
 (1) functions for terminating or quitting a process;
 (2) functions allowing the return to any of the previous steps.
 The main objective of this paper is the specification of an abstract
menu-select interaction on the basis of CSP, concentrating our attention on
these three commonly used function types. In greater detail, these functions
are;
 (1) ‘stop’ – to terminate or quit a process;
 (2) 2.1. ‘reset’ – to start again from the beginning of a process;
 2.2. ‘back’ - to undo the most recent action in a process;
 The model of a menu-select interactive system is based on the
specification of these functions, which can be described in CSP. But CSP
facilities are not enough to describe a menu-select interaction model
completely. Therefore we need to extend CSP facilities with new processes
which define the above mentioned functions. For a definition of the
appropriate processes we will use a derivative definition, defining a process
P by two objects: a set I, defining the initial state of process P , i.e. P0 and
a function mapping each member ‘c’ of I into a process, defining the
subsequent behavior of P, i.e. P/<c>. If P is a process, let’s define the
following processes:

Stoppable(P).
 Let ‘stop’ be a symbol not in the alphabet αP. Then the process
stoppable (P) can be defined as a process which behaves like P, except that
(1) ‘stop’ is in its alphabet;
(2) ‘stop’ is in every menu of stoppable (P);
(3) when ‘stop’ occurs, stoppable (P) terminates successfully.
For example: <a, b, c, stop, √ > ∈ stoppable (P)  <a, b, c> ∈ P, where
symbol √denotes the event of a successful termination of the process.
Definition 1.
stop∉ αP& (stoppable(P))0 = P0 ∪ {stop} &

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

29

 SKIP, if x=stop
(stoppable(P))/<x>= {

 stoppable(P/x), if x ≠ stop
Example 2.

Figure 2.

Resettable (P).
 Let ‘reset’ be a symbol not in the alphabet αP. Define ‘resettable (P)’
as a process that behaves like P, except that
(1) ‘reset’ in its alphabet;
(2) ‘reset ‘ is in every menu of resettable (P);
(3) when ‘reset’ occurs, resettable (P) starts again from the beginning.
For example: <a, b, reset, c, d>∈ resettable(P)  <a, b>∈ P & <c, d> ∈ P.
 Definition 2.
reset∉αP& resettable(P) =start(P,P), where

 (start(P,Q))0 = P0 ∪ {reset} &
 start(Q, Q), if x=reset

 (start(P,Q))/<x>= {
 start(P/x, Q), if x ≠ reset

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

30

Example 3.

Figure 3.

Backtrackable (P).
 Let ‘back’ be a symbol not in the alphabet αP. Define
backtrackable(P) as a process that behaves like P, except that
(1) ‘back’ in its alphabet;
(2) ‘back’is in every menu of backtrackable (P);
(3) backtrackable (P)/s<x,back> = backtrackable (P)/s provided x ≠ ‘back’.
 The intention is that ‘back’ will cancel the effect of the most recent
action which has not already been cancelled (other than ‘back’ itself). For
example: <a, b, back, d>∈ backtrackable (P)  < a, d >∈ P, <a, b, c,
back, back, d>∈ backtrackable (P)  < a, d >∈ P
Definition 3.
back∉ αP& backtrackable(P) =recover(P,P), where

(recover(P,Q))0 = P0 ∪ {back} &
 Q, if x=back

 (recover(P,Q))/<x>= {
 recover(P/x, recover(P,Q)), if x ≠ back

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

31

Example 4

Figure 4.

 The above sited definitions can be adequately implemented in the
form of recursively defined functions or procedures. CSP theory permits
the creation of models for a variety of software applications and is
especially appropriate for those that are based on an event-driven
programming paradigm. This paradigm is widely used in the majority of
object –oriented programming systems. The evolution of the object-oriented
programming technique led to the appearance of the CSP-OZ theory, which
is based on a combination of CSP and the object-oriented specification
language Object-Z (Fischer, 1997, Duke, 1995). This theory provides a
specification of the behavior of communicating processes and, in addition
to CSP it permits the description of object-oriented models. Materials
concerning the application of CSP-OZ theory to the development of
information systems have been published in a monograph (Enikeev,
Benduma, 2011).
 OCCAM is a concurrent programming language that builds on
Communicating Sequential Processes (CSP) and shares many of its
features. It was developed as the programming language for the transputer
microprocessors, although implementations for other platforms are available
(Roscoe, 1986, Inmos Limited Prentice-Hall,1984). The example of the
OCCAM program is:

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

32

An analog volume control of a digital radio

 As an example, a digital radio replaces an analog volume control with
two buttons, one marked “louder”, the other marked “softer”. These buttons
are connected to two channels, “louder” and “softer” respectively, and
whenever either button is pressed it causes a message to be sent along the
corresponding channel. By pressing the buttons we may increase or decrease
the volume, the value of which is transmitted to the amplifier. Here
SEQ(P,Q) denotes P;Q, chan?var is an input of a value from the channel
chan into the variable var, chan!expr is an output of the value of the
expression expr to the channel chan, alter(P,Q) is P | Q (alternative
processes).
 Model-driven engineering (MDE) is a software development
methodology which focuses on creating and exploiting domain models (that
is, abstract representations of the knowledge and activities that govern a
particular domain of application) [Meyer,1997, Swithinbank, Chessell,
Gardner, Griffin, Man, Wylie, Yusuf, 2005, E. Gamma, R. Helm, R.
Johnson, and J. Vlissides, 1994). The first project to support MDE were the
Computer-Aided Software Engineering (CASE) tools developed in the 1980s
(Rational Software Corporation, Rational Rose,2001, Hubert, Johnson,
Wilkinson, 2003). Companies like Integrated Development
Environments (IDE - StP), Higher Order Software (now Hamilton
Technologies, Inc., HTI), Cadre Technologies, Bachman Information
Systems, and Logic Works (BP-Win and ER-Win) were pioneers in the

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

33

field. Several variations of the modeling definitions (see Booch, Rumbaugh,
Jacobson, Gane and Sarson, Harel, Shlaer and Mellor, and others) were
eventually combined to create the Unified Modeling Language (UML).
Rational Rose, a product for UML implementation, was made by Rational
Corporation (Larman, 2004). UML language representing a high level
of model-driven engineering approach provides the possibility of
software application development using special diagrams (see figure 5
below).

Figure 5.

The advantages of UML
• UML is an object-oriented language, therefore the methods of
describing the results of the analysis and design are semantically similar to
the methods of programming in modern object-oriented languages;
• UML permits the description of the system from any possible point
of view and with different aspects of system behavior;
• UML diagrams are relatively easy to learn;
• UML permits the definition of new text and image stereotypes;
• UML is widely used and is currently being intensively developed.
The disadvantages of UML
• superfluity of language;
• ambiguous semantics;
• Trying to be everything to everyone;

Conclusion
 This paper presents an overview of formal tools for a creation of
mathematical software models which may be useful in the software

http://www.amazon.com/Craig-Larman/e/B000APVUN6/ref=dp_byline_cont_book_1

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

34

engineering. Despite many theoretical works having recently appeared in
software engineering, the problem of their application to software
engineering continues to be crucial. One of the most promising ways of
solving the problem is to train professionals who combine practical
experience in software engineering with an appropriate mathematical
background. In addition to this we need to create new technological tools
based on an optimal combination of developer intuition and a formal,
rigorous approach to the software development process.

References
 “History and Structure”. Oxford University Computing Laboratory, Internet
Archive. 2007. Retrieved 3 May 2013. 2.
“Undergraduate handbook 2006–07”. Oxford University Computing
Laboratory, Internet Archive. 2007. Retrieved 3 May 2013.3.
3. C.A.R. Hoare. Programming is an engineering profession. //Oxford
University Computing Laboratory, PRG, 1982.
C.A.R. Hoare. Specifications, Programs and Implementations. //Oxford
University Computing Laboratory, PRG, 1982.
5. Hoare, C. A. R. (October 1969). “An axiomatic basis for computer
programming”. Communications of the ACM 12 (10): 576–580.
doi:10.1145/363235.363259,1969.
6. Georgiev V.O., Enikeev A.I. Transformation Approach in Dialogue
Systems Engineering. SOFTWARE & SYSTEMS. № 1, 1992, 9 – 17.
7. Ershov, A. P. 1982. Mixed computation: Potential applications and
problems for study. Theor. Comput. Sci., 18, 41-67.
8. C. A. R. Hoare, Communicating sequential processes, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1985.
9. A.I. Enikeev, C.A.R. Hoare and A. Teruel, A model of the theory of
communicating processes for a menu-select interactive system,
Mathematica. Vol. 3. 1987, pp.28-36, in Russian).
10.C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman
and J.Derrick, editors, Formal Methods for Open Object-Based Distributed
Systems, volume 2, pages 423–438. Chapman & Hall, 1997.
11. R. Duke, G. Rose, and G. Smith. Object-Z: A specification language
advocated for the description of standards. Computer Standards and
Interfaces, 17:511– 533, 1995.
12.Arslan Enikeev, Tahar Benduma, SPECIALIZED MODELS FOR THE
DEVELOPMENT OF INFORMATION SYSTEMS, LAP, LAMBERT
Academic Publishing, ISBN: 978-3-8454-4045-3, 2011, 97 p.
13. Roscoe, A.W. Laws of Occam Programming, Oxford University
Computing Laboratory, Programming Research Group 1986 ISBN 0
902928 34 1.

European Scientific Journal October 2015 /SPECIAL/ edition Vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

35

14. Inmos Limited Prentice-Hall 1984 ISBN 0 13 629296 8 Japanese edition:
ISBN 4-7665-0133-0.
15.Meyer, B.: “Object-Oriented Software Construction, 2nd ed”; Upper
Saddle River, NJ, USA: Prentice Hall PTR (1997).
16.P. Swithinbank, M. Chessell, T. Gardner, C. Griffin, J. Man, H. Wylie,
and L.Yusuf, “Patterns: Model-Driven Development Using IBM Rational
Software Architect”, IBM, Redbooks, December 2005,
http://www.redbooks.ibm.com/redbooks/pdfs/sg247105.pdf
17.E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.
18.Rational Software Corporation, Rational Rose, http://www.rational.com,
2001.
19. Hubert A. Johnson, Laura Wilkinson, Case tools in object-oriented
analysis and design, Journal of Computing Sciences in Colleges , Volume 19
Issue 2, 2003.
20. Craig Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition),
Prentice Hall; 3 edition, 2004 - 736 p.

http://www.redbooks.ibm.com/redbooks/pdfs/sg247105.pdf
http://www.rational.com/
http://www.amazon.com/Craig-Larman/e/B000APVUN6/ref=dp_byline_cont_book_1

