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Abstract  
 Modeling of groundwater recharge is one of the most important 
topics in hydrology due to its essential application to water resources 
management. In this study, an Adaptive Neuro Fuzzy Inference System 
(ANFIS) method is used to simulate groundwater recharge for watersheds. 
In-situ observational datasets for temperature, precipitation, 
evapotranspiration, (ETo) and groundwater recharge of the Lake Karla, 
Thessaly, Greece watershed were taken into consideration for the present 
study. The datasets consisted of monthly average values of the last almost 50 
years, where 70% of the values used for learning with the rest for the testing 
phase. The testing was performed under a set of different membership 
functions without expert’s knowledge acquisition and with the support of a 
five-layer neural network. Experimental verification shows that, the 3-3-3 
combination under the trapezoid membership function with the hybrid neural 
network support and the 2-2-2 combination under the g-bell membership 
function with the same neural network support perform the best among all 
combinations with RMSE 4.78881 and 4.12944 giving on average 5% 
deviation from the observed values. 
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Introduction 
 Soil water content is a key parameter that controls several 
hydrological processes and provides valuable information for water 
resources planning and management. Soil water modeling is very important 
for hydrology, weather and climate studies, water resource management, 
reliable irrigation design, and determining contaminants and nutrients’ fate 
and transport. For a watershed, the groundwater recharge or deep drainage or 
deep percolation is the hydrologic process where water moves downward 
from surface water to groundwater. This process usually occurs in the zone 
below the level of the plant roots and is often expressed as a flux to the water 
table surface (Allison, 1978). Thus, the accurate estimation of groundwater 
recharge has an importance for water resource engineering problems such as 
soil water balance, irrigation systems and water supply for cultivation.  
 Furthermore, groundwater recharge is a process which is highly 
affected by a variety of non-linear factors like rainfall characteristics and 
overall precipitation, watershed morphology, evapotranspiration occurred in 
the area, soil moisture, etc. However, any effort to model the relationship 
between the groundwater recharge and the aforementioned factors would be 
confronted with difficulties including being highly non-linear, time-varying, 
spatially distributed, and stochastic. In addition, the deficiencies in data like 
missing data, noisy data, and in some cases having insufficient data present a 
major problem in groundwater recharge modeling. 
 In the past decades, several soft computing techniques have been 
applied in a number of diverse fields including system modeling, fault 
diagnosis and control, pattern recognition, financial forecasting and water 
resources. These techniques are known for their efficiency in dealing with 
complicated problems, with only sets of operational data available. However, 
the application of soft computing techniques to groundwater recharge 
modeling and the modeling of several hydrological processes in general is 
limited in the literature. To the best of our knowledge there are just few 
publications that are mostly related to the rainfall-runoff, the forecasting of 
inflows into a reservoir and some works that are dealing with the estimation 
and forecasting of the evapotranspiration factor in a watershed. From this 
point of view, the application of soft computing techniques for the 
forecasting of groundwater recharge initiates a new research branch for the 
groundwater modeling.   
 In this work we develop an Adaptive Network Fuzzy Inference 
System (ANFIS) for the forecasting of groundwater recharge. The modeling 
is based on using three input time series namely: temperature, precipitation 
and evapotranspiration. The output is a time series of the groundwater 
recharge. The system we develop is based on time series of monthly values 
since the decade of 1960’s up to date and refers to the Lake Karla watershed 
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in Thessaly Greece. For this time period, we have also collected 
observational data regarding the groundwater recharge taken from several 
observation wells located in the area against which, we compare our ANFIS 
simulation. 
 In the following sections, we describe: a short yet compact literature 
review on the fuzzy inference systems, (FIS) and the applications of FIS into 
hydrological modeling, a description of the region under study, the 
development and the specifics of the ANFIS and a discussion of the results 
produced. Finally, conclusions and future challenges are drawn. 
 
Literature Review 
 Most of the soft computing methodologies that deal with 
hydrological processes mainly focus on the prediction of rainfall-runoff and 
the evapotranspiration. The prediction of the rainfall-runoff is closely 
depended on factors such as the precipitation, evaporation, transpiration, 
interception, infiltration, stream flow and of course the variability in time 
and space of the above. However, the rainfall-runoff is practically 
contributes mainly to deep percolation especially for basins and watersheds 
with impermeable boundaries. 
 Research that deals with this prediction is divided in the categories of 
Artificial Neural Networks (ANN), Genetic Algorithms and Fuzzy Logic. 
However we concentrate only in the Fuzzy Logic methodology since our 
work is closely related to that category. 
 The work in (Talei et al., 2010) used an ANFIS for event-based 
rainfall-runoff modelling. The results of the ANFIS were compared with an 
established physical-based model. The study showed that ANFIS is 
comparable to the physical model and is found to give a better peak flow 
estimation compared to the physical model. Also (Dorum et al., 2010) 
compared the predictions of rainfall-runoff data using ANN and ANIFS 
methods. For this comparison they used a multi regression. This study 
showed that ANN and ANIFS models can be used in determination of 
rainfall runoff relationships of basins except peak situations. 
 The work by (Gerner, A., 2013) mainly focuses on the uncertainty 
regarding the potential, albeit unknown extent of groundwater basins based 
on continuous surfaces which represent the degree of membership to a 
distinct geographical entity (termed as fuzzy regions). The proposed strategy 
was applied on the large scale in an arid karst mountain range in northern 
Oman. The ANFIS methodology applied was in good agreement with the 
results of other conceptual hydrologic models used and was confirmed by the 
plausibility of average recharge rates for distinct response units and seasons. 
 Also (Umamaheswari and Kalamani, 2014) employed an ANFIS 
approach to observe its applicability on prediction and forecasting of 
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monthly groundwater level fluctuation in the study area (Amaravathi River 
Minor Basin). Their proposed model was the best fit by the hybrid technique 
with 6:3:3 membership functions with their forecasted model performance to 
exactly replicate the current situation of the groundwater system.  
 Finally, in the most recent research work, (Maiti and Tiwari, 2014) 
examined the comparative merits and demerits of ANN, Bayesian ANN and 
ANFIS in the predictive modeling of groundwater level fluctuations. Initially 
they carried out a sensitivity analysis based on an automatic relevance 
determination scheme to examine the relative influence of each of the hydro-
meteorological attributes on groundwater level fluctuations. Then, the 3 
techniques were applied to model the groundwater level fluctuation time 
series of six wells from a hard rock area of Dindigul in Southern India. They 
compared the 3 models using standard quantitative statistical measures such 
as Root Mean Square Error, (RMSE) and Pearson’s correlation coefficient 
(R). Based on the above analyses, it was found that the ANFIS model 
performed better in modeling noise-free data than the other two models.  
 
Study Area 
 We are dealing with the hydrological processing of the surrounding 
watershed of Lake Karla in Thessaly, Greece. The natural basin of Lake 
Karla was initially extended in an area of 1,663 km2 but after the construction 
of complimentary works, the drainage area of the restored lake Karla will be 
1171 km2 (Figure 1-Left) (Loukas et al., 2007).  

  
Fig. 1 Left) Lake Karla basin map indicating the underlying aquifer and the reservoir. Right) 

Aquifer map with pumping wells, zones and observation wells. 
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 The region is characterized by its continental Mediterranean climate 
and there is a noticeable fluctuation of temperature between winter and 
summer time. The average temperature is 16-17o C and the mean annual 
relative humidity is 67%-72%. Snowfall is usually on the mountains during 
winter when significant snow peaks develop.  
 The waters of the region are used primarily for irrigation. 
Unfortunately, the water balance of the watershed is disturbed and it keeps 
deteriorating due to the overexploitation of the groundwater system resulting 
into the degradation of the available water resources. The phreatic aquifer of 
the lake has been simulated by the Modflow numerical model, (Harbaugh et 
al., 2000).  The region has been discretized into an orthogonal grid of 40.000 
cells, with a grid spacing of 200m X 197m. The resulting network has 
covered a region of about 500 km2. To the west a (not so strong) hydraulic 
contact with the adjacent aquifer has been established and simulated with the 
General Head Boundary while the eastern boundary, consisting of schist was 
considered impermeable. The primary surface inflow of the model was the 
surface recharge. The study area was divided into 7 pumping zones, as is 
shown in (Figure 1-Right).  
 
Adaptive Neuro Fuzzy Inference Systems 
 A fuzzy inference system (FIS) is an inference mapping that provides 
an intuition for the relationship between a series of input and output sets. 
This mapping from a given input to an output using fuzzy logic is called 
Fuzzy Inference (Adriaenssens et al., 2004). These systems have proved to 
work better when the input and output sets are time series data of the same 
time step. The FIS uses fuzzy logic principles to establish the input-output 
relationship through a rule based inference engine that consists of: (a) a rule-
base, containing fuzzy if–then rules, (b) a data-base, defining the 
membership functions (MF) and (c) an inference system, combining the 
fuzzy rules and producing the system results (Sen, 2001). There are two 
types of popular FIS, the Takagi–Sugeno FIS, (Takagi and Sugeno, 1985) 
and the Mamdani FIS (Jang et al., 1997). The difference between the two 
approaches is the definition of the consequent parameters in the network. 
The FIS used in this study is a Takagi and Sugeno type FIS in which the rule 
base is constructed from the input–output pairs and it consists of five layers 
as seen in Figure 2: (L1) Input fuzzification, (L2) Fuzzy set database 
construction, (L3) Fuzzy rule base construction, (L4) Decision making and 
(L5) Output defuzzification. 
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Fig. 2 Adaptive neuro-fuzzy inference system structure (Khoshnevisan et al. 2014) 

 
 In Layer 1, every node i is an adaptive node with a node function, 
given in eq. (1):  

2,1)(,1 == iforxO
iAi µ        (1) 

where x indicates the input to node i, Ai represents the linguistic label 
associated with this node function, and O1,i  is the membership function 
of Ai that specifies the degree to which the given x satisfies Ai . Regarding all 
other input y, the node functions have exactly the same behavior with the 
function family as x, with the condition that they belong to the same layer. In 
Layer 2, every node is a fixed node and acts as a simple multiplier. The 
outputs of these nodes are given by eq. (2): 

2,1)()(,2 === iforyxwO
ii BAii µµ        (2) 

which are the so-called firing strengths of the rules. 
 Every node, in Layer 3, is an adaptive node indicated as N. The i-th 
node calculates the ratio of the i-th rule’s firing strength to the sum of all 
rules’ firing strengths. Eq. (3) shows how to obtain the output of this layer:  

21
,3 ww

wwO i
ii +
==  

      (3) 

Each node, in Layer 4, is an adaptive node with a function given by eq. (4):  
)(,4 iiiiiii ryqxpwfwO ++==  

      (4) 

where iw is the output of layer 3, and {pi, qi, ri} are referred to as consequent 
parameters. Finally, the single node, in Layer 5, is a fixed node indicated as 
∑ (sum) that computes the overall output as the sum of all incoming inputs:  
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      (5) 

 To construct an ANFIS from a given input/output data set, we first 
construct the FIS whose membership function parameters are tuned 
(adjusted) using either a back propagation algorithm alone or in combination 
with a least squares type of method (Singh et al., 2012). Learning using the 
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neuro-adaptive method works similarly to that of neural networks as for the 
procedure to learn information about a data set. In other words, ANFIS, 
which is a combination of ANN and FIS, has the benefits of the two models 
(Azadeh et al., 2011). Propagation and hybrid are two learning methods 
which are generally applied in ANFIS to clearly describe the relationship 
between input and output (Khoshnevisan et al. 2014).  Hybrid learning, 
which is a combination of gradient decent method and least squares 
approach, can decrease the complexity of the algorithm and simultaneously 
increase the learning efficiency. The parameters associated with membership 
functions will change through the learning process using a gradient vector 
that facilitates in this recalculation. So every time the gradient vector is 
obtained, an optimization procedure can be performed to adjust parameters 
in order to reduce errors. 
 
ANFIS application in predicting groundwater recharge 
 For our simulation we used the Matlab 2014(b)-ANFIS tool named 
ANFIS-Editor. The tool is designed to utilize different variables including a 
normalization method, trial step quantity and various data classification 
methods to achieve the minimum error between predicted values and real 
data. The number and type of membership functions, (MF), the type of 
output MF, the optimization method (hybrid or back propagation) and the 
number of epochs are five important adjustments in ANFIS to reach the most 
effective model with minimum errors. Figure 3 summarizes the types of 
membership functions used in our simulation. Our primary goal was to find 
the effect of these adjustments and their subdivisions in different 
combinations in order to develop these ANFIS models and compare the 
results. For this purpose, all possible combinations of these adjustments are 
applied to the same sets of training and testing data. For the aforementioned 
reasons, we included in our experiment four data monthly time series of 434 
values with each one spanning almost the last 50 years of observations, 
namely: temperature, precipitation, evapotranspiration and groundwater 
recharge. The first three are used as the input data whereas the groundwater 
recharge is the one that our system predicts. Out of the 434 values, the first 
303 values are used for training and the rest 131 for testing and forecasting. 
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(a) 
    

(b) 

 

            
(c)              
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 (e) 

Fig. 3 Membership functions used in the ANFIS: (a) trimf, (b) trapmf, (c) gbelmf, (d) 
gaussmf and (e) gauss2mf. 

 
 The same split of the data set was used for every combination of 
membership function and function type. Figure 4 shows the loading of 
training data and the basic configuration of the ANFIS-Editor module.  

 
Fig. 4 Training phase in anfisedit and selection of the fuzzy inference system. 
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 The Takagi & Sugeno fuzzy inference system contains an inference 
engine in which the conclusion of a fuzzy rule comprises a weighted linear 
combination of the crisp inputs rather than a fuzzy set (Takagi and Sugeno, 
1985). The system has the following structure: 

rqypxfTHENBisyandAisxIF ++=        (6) 
where p, q, and r are constant parameters. The model is suitable for 
approximating a large class of non-linear systems. For our case, the fuzzy 
rules are purely constructed from data without any expert’s knowledge 
acquisition. In this case, the fuzzy rules are designated a priori and the 
parameters of the membership functions are adapted during the learning 
process from input to output data using a hybrid neural network. The neural 
net defines the shape of the membership functions of the premises. Figure 5-
Left shows an example of the unsupervised construction of fuzzy rules and 
Figure 5-Right the corresponding neural network that participates in this 
construction.   

 
Fig. 5 Left) Fuzzy rule viewer for the case of the 3-3-3 trapmf membership function. Right) 
The corresponding 5-layer neural network that participates in the construction of the fuzzy 

rules. 
 
 For the learning/training part, the system uses two passes in the 
hybrid learning procedure. In the forward pass of the hybrid-learning 
algorithm, the system forces the functional signals of the neural network to 
go forward till layer 4. At this point, the consequent parameters are identified 
by the least-squares estimate. We then move to the backward pass, where the 
error rates propagate backward and the premise parameters are updated by 
the gradient descent. In our case the parameters are fixed, for both 
combinations 3-3-3 and 2-2-2. Thus for both cases the overall output is 
expressed as a linear combination of the consequent parameters. Table 1 
depicts all the results taken after running 5 simulations with the combination 
3-3-3 and another 5 simulations with the combination 2-2-2.  
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TABLE 1 
Number of Membership Functions: 3-3-3 Linear              Optimization: Hybrid/Back 

 MFT NN NLP NNLP TNP NTDP NCDP NFR RMSE MAPE 
trimf 78 108 27 135 303 131 27 133.41975 16.6720 

trapmf 78 108 36 144 303 131 27 4.78881 2.10136 
gbelmf 78 108 27 135 303 131 27 13.67616 3.05041 

gaussmf 78 108 18 116 303 131 27 8.80895 2.26571 
gauss2mf 78 108 36 144 303 131 27 6.85502 2.35748 

Number of Membership Functions: 2-2-2 Linear              Optimization: Hybrid/Back 
  NN NLP NNLP TNP NTDP NCDP NFR RMSE MAPE 

trimf 34 32 18 50 303 131 8 6.61821 7.01869 
trapmf 34 32 24 56 303 131 8 6.95011 2.26861 
gbelmf 34 32 18 50 303 131 8 4.12944 1.92513 

gaussmf 34 32 12 44 303 131 8 4.69009 2.04586 
gauss2mf 34 32 24 56 303 131 8 5.74805 2.17019 

MFT= Membership Function Type 
NN = Number of Nodes 

NLP = Number of Linear Parameters 
NNLP = Number of Non-Linear 

Parameters 
TNP = Total Number of Parameters 

 
 
 
 
 

 

NTDP = Number of Training Data Pairs 
NCDP = Number of Checking Data Pairs 

NFR= Number of Fuzzy Rules 
RMSE = Root Mean Square Error 

MAPE = Mean Absolute Percentage Error 
 
 
 
 

 

 
 Each set of the 5 runs correspond to the use of the trimf, tramf, 
gbelmf, gaussmf and gauss2mf membership function types respectively. The 
table contains information of the number of fuzzy rules used for each case 
and the use of linear and non-linear parameters. For each case, the RMSE 
and the Mean Absolute Percentage Error, (MAPE) was calculated. The 
results show that, the best approach for the hybrid combination of 3-3-3 is 
the use of the trapezoid membership function with RMSE=4.78881 and 
MAPE=2.10136.  

 
Fig. 6 Left) Observed and predicted time series with the 3-3-3 trapmf membership function 
configuration. Right) Observed and predicted time series with the 2-2-2 gbelmf membership 

function configuration. 
 
 On the other hand, the best approach for the hybrid combination of 2-
2-2 is the use of the gbel membership function with RMSE=4.12944 and 
MAPE=1.92513.Based on RMSE results both indicated cases perform 
roughly equally in the range of average 5% error from the observed values.  
Figure 6 shows the predicted values of the groundwater recharge (red curve) 
against the observed (blue curve) for the two cases. 
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Conclusion and Future Challenges 
 In this work, we presented a novel approach in predicting the 
groundwater recharge of a watershed using temperature, precipitation and 
evapotranspiration time series data.  The methodology uses an ANFIS where 
70% of the available data participates in the learning process with the rest for 
testing the predicted values against the observed. The results are very 
promising reaching an almost 5% deviation from the observed values. We 
plan to model a similar technique for forecasting but with the use of 
Adaptive Neural Networks and Bayesian Neural Networks. We strongly 
believe that a combination of the three methodologies can provide a new and 
useful tool for hydrologists and modelers in managing water resources in a 
watershed. 
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