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Abstract
3D Television is the latest advancement in television viewing. Creating enough stereoscopic

(S3D) material with stereoscopic cameras for 3DTV is time consuming & expensive. Thus
the conversion of the vast collection of already existing 2D images/videos to S3D is essential.
Monoscopic video content can be efficiently converted to stereo by using depth maps. The
effectiveness of 2D to 3D video conversion depends on the accuracy of the generated depth
maps. However, current techniques either use single monocular depth cues, which are
restrained to a specific set of images/videos or combine multiple monocular cues, thus
increasing the complexity and execution time of the system. The proposed algorithm
alleviates these problems by using a novel depth map generation algorithm that can be used
over a wide range of arbitrary videos. The high efficiency of this automatic algorithm without
requiring any prior training combined with its high execution speed make it ideal for

application in 3D television broadcasting industry.

Keywords: Broadcasting, Depth Map Generation, Stereo Displays, Three-Dimensional
Displays, 2D-to-3D Conversion, 3D-TV, 3D Video

Introduction
Three-dimensional television (3D-TV), the latest advancement of television, increases

the visual impact and the sense of presence for viewers. The supply of adequate stereoscopic
3-dimensional (S3D) content is essential to ensure that the public would be willing to spend

money for 3D displays and 3D-TV services. Creating enough S3D material with stereoscopic
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cameras is time consuming & expensive. The conversion of the vast collection of already
existing 2D images/videos to S3D is one way to alleviate this difficult problem [1].

The conversion of 2D images to stereoscopic 3D images involves horizontal shifting
of pixels to create a new image, so that there are horizontal disparities between the original
image and a new version of it. There are three schemes for this conversion: manual, human-
assisted and automatic. The manual scheme is to shift the pixels horizontally with an
artistically chosen depth value for different regions/objects in the image to generate a new
image [2]. This method is very time consuming and expensive. The human-assisted scheme is
to convert 2D images to stereoscopic 3D with some corrections made “manually” by an
operator. Even though this scheme reduces the time consumed in comparison to the manual
conversion scheme, a significant amount of human engagement is still required to complete
the conversion. The automatic conversion scheme exploits depth information originated from
a single image or from a stream of images to generate a new projection of the scene with a
virtual camera of a slightly different (horizontally shifted) viewpoint. This scheme involves
retrieving depth information from a monoscopic image or video and generating high-quality
stereoscopic images at new virtual viewpoints [1].

Depth map is a greyscale picture in which a pixel’s brightness specifies that pixel’s
distance from the viewer in the original picture. This correspondence map should be
constructed for each frame of the input 2D video. The resulting stereo video is generated
from the corresponding depth maps and the original 2D video by shifting each pixel of a
given 2D image to the left or to the right depending on the corresponding depth value, the
type of stereo view (right or left) and the generation settings.This process is simpler, more
practical, more predictable and repeatable than other methods of 3D scene reconstruction [3].

Background and Related Work
Depth cues can be classified into monocular and binocular. Binocular cues provide

depth information when viewing a scene with both eyes through exploitation of differences
between the perceived images, while monocular cues provide depth information when
viewing a scene with one eye [1].An existing 2D video when converted into individual
frames for processing has only 1 view for each frame & hence binocular methods cannot be
used for video. The constraints in selection of depth cues for conversion of existing videos
are more restrictive than for images. The pictorial and geometric type of monocular depth
cues generally used in depth map generation and their associated constraints for individual

usage in 2D to 3D video conversion are as follows:
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Focus/Defocus (Blur) [4]-[7]: Blur is one of the first mechanisms to be employed to
recover the depth from single images.

Approach 1: Employ several images with different focus characteristics in order to
extract the variation of blur for a given image feature across the available images. This
approach is reliable & provides good depth estimation.

Constraints: The requirement of having several images of the same scene captured
with different optical systems simultaneously is too restrictive to be of any practical
application in the 2D-to-3D conversion problem.

Approach 2: Extract the blur information from a single image. This approach is
relatively simple.

Constraints: The scenes captured using advanced cameras do not necessarily show
background as out-of-focus regions.

Texture Gradient [7]-[9]: This method, also called shape-from-texture, aims to
estimate the shape of a surface based on cues from markings on the surface or its texture. It is
highly efficient for textured images & can be used to estimate distance when width, or
separation of elements perpendicular to the surface slant, decreases with increasing distance
and is known as perspective gradient or height, or separation of elements in the direction of
surface slant, decreases with increasing distance and is known as compression gradient or
density, or number of elements per unit area, increases with increasing distance and is known
as density gradient.

Constraints: This approach is normally restricted to specific types of images and
cannot be applied to 2D-to-3D conversion of general video content. Also all three texture
cues vary with distance according to a power law which depends on the surface slant of the
texture and the observer’s height. It has been reported that texture gradients were only useful
when the surface slant was in excess of 50° from vertical and when elements of similar size,
shape, and spacing repeat in the scene

Light and Shadow [10]-[11]: Light and shadow distribution refers to the information
provided by shadows with respect to the position and shape of objects relative to other
objects and the background. This method can be used to measure depth of various objects that
are solid, have only one light source or placed lower than the ground plane (like a well).

Constraints: When utilising shadows, the visual system makes the assumptions that
the light is directed from above and the objects are convex rather than concave. For attached
shadows, the illumination should be uniform and the object's surface should be a uniform,

diffuse reflector.
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Linear Perspective [12]-[15]: Linear perspective refers to the property of parallel
lines of converging at infinite distance, or equivalently, a fixed size object will produce a
smaller visual angle when more distant from the eye. This characteristic is used for depth
estimation by detecting parallel lines in the images and identifying the point where these lines
converge (vanishing point). Then a suitable assignment of depth can be derived based on the
position of the lines and the vanishing point. This is the most commonly used geometric cue.

Constraints: It alone is not sufficient for faithful depth analysis of picture.

Height [7], [16]-[17]: The height in picture denotes that objects that are closer to the
bottom of the images are generally closer than objects at the top of the picture. Outdoor and
landscape scenes mainly contain this pictorial depth cue. To extract this depth cue, horizontal
lines usually have to be identified so that the image can be divided into stripes that go from
the left border to the right border. For this purpose, a line-tracing algorithm is applied to
recover the optimal dividing lines subject to some geometric constraints. A depth-refining
step is further applied to improve the quality of the final depth map.

Constraints: For assigning depths to a 2D image, a pre-defined depth model, which
can be adjusted according to image structure, is required. As also, it is limited to objects in
contact with a level, horizontal, ground plane.

Atmospheric scattering [12],[18]-[20]: Atmospheric scattering refers to the
scattering of light rays by the atmosphere producing a bluish tint and less contrast to objects
that are in the far distance and a better contrast to objects that are in close range. It is a simple
approach & can provide a significant enhancement to the 3D effect with respect to the
perceived depth in 2D images.

Constraints: The colour rules, to divide landscape/outdoor images into six regions
such as sky, farthest mountain, far mountain, near mountain, land, and other have to be learnt
heuristically & it is difficult for use in studio images.

Motion Parallax [7]: Motion parallax refers to the relative motions of objects across
the retina. For a moving observer, near objects move faster across the retina than far objects,
and so relative motion provides an important depth cue. This is usually called the principle of
the depth from motion parallax approach.

Constraints: Not all video sequences will provide motion parallax to depth. In
principle, only video sequences that are captured by a freely moving camera have motion
parallax that is closely related to the captured scene structure. If the camera has no motion,
the captured video sequence does not have motion parallax. Even if there are some

Independently Moving Objects (IMOs) in the scene, their motions will provide some cue to
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depth under certain circumstances, but this cue could be error-prone. Also, different camera
motions will lead to different strengths of depth perception. A freely moving camera can
provide more information about the depth in the scene than a camera with a
zooming/translating motion along the optical axis. A camera that only rotates around the
optical axis does not provide any information about the depth.

Combining Depth cues: As seen above, all monocular depth cues have limitations
constraining their utility for 3D Television, thus it would be appropriate to combine cues
according to a context-dependent weighted average. The majority of depth cues provide
highly correlated quantitative information such as texture gradients and motion parallax. A
single estimate of depth needs to be calculated from the variety of cues available. Given that
the reliability of each cue is limited to certain conditions, a simple average of all the estimates
would be inappropriate [7]. If the value of one variable is informative about the value of the
other and the system knows their joint distribution then it would be useful to combine these
signals [21]. Modified Weak Fusion (MWF) [22] and Bayesian Theory of combining depth
cues [23] are powerful techniques. This may be combined with the ‘Depth from X’ approach
to make the process more tractable for 3D Television [24]. Thus combining depth cues
increases efficiency as compared to using single monocular depth cues but at the same time
also increases the complexity and processing time of the system.

The Proposed Algorithm:
The proposed algorithm as explained in this section provides a novel method of

providing depth information for 3D Television where the input may be arbitrary and wide
range of videos without combining depth cues.

The Proposed Algorithm:
1. Convert video to frames.

For each frame:

2. Separate background & foreground.

3. Count the number of objects in foreground.

4. For each foreground (object) component find the y-axis co-ordinate of the bottom-
most pixel to know which component is the front-most & which is behind.

5. Sort the array of detected foreground components based on the y-axis co-ordinate
of the bottom-most pixel in descending order. Thus, the top-most value is the

front-most object & so on.
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6. Count the numbers of distinct levels at which components are present by finding
the unique number of y-axis co-ordinates of bottom-most pixels. This equals the
number of distinct grey shades required for representing the depth map.

7. Assign white to the front-most component, intermediate grey shades to other
components behind it, proceeding towards black for background.

Shade assignment for foreground components is done as follows:
Let n: number of distinct levels at which component present
J: component number
If j=1, (nearest component)
Assign the shade white = 255 (maximum intensity of any greyscale image)
Else for other components:
If current component is at same level as previous component,
Intermediate Grey Shade = ((n-j-1)/n)*255
Else,
Intermediate Grey Shade = ((n-j)/n)*255.

8. The resulting image is the generated depth map.

Any existing (including High Definition) video when converted to frames consists of
images that have main objects in front of the background. For the front-most object, the rest
of the image becomes the background, then for the object behind the front-most, the
remaining part of the image becomes the background and so on till we are only left with an
approximately single intensity background (for example: Sky in outdoor images or a wall in
indoor images).

In addition, it has been observed that the front-most objects which are closest to the
viewer will start at the maximum y-co-ordinate as compared to others. For example, consider

the following two images:

‘-:E:_S)m x — co-ordinates of pixels

Object1,level 1 Object 3, level 2

v — Co-ordinates of pixels Object 2, level 2

Object1,level 1

Object4, level 3
Figl.Some Identified Objects and Levels in Two Examples of Video Images
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As it can be seen from the above images, the objects closest to the viewer have pixels

with maximum y-co-ordinates which decrease as the objects move farther away.

F

Difference in Height of Two
Objects atthe Same Level

Fig2.Two Objects at the Same Level but with Different Heights
As seen in Figure 2, the two identified objects are at the same level(y-co-ordinate level)

I.e. at the same distance from the viewer & hence at the same depth but they have different
heights. Hence the bottom-most pixels of each object are considered & not the top-most since
though the levels are different both the objects have the same y-co-ordinates for the bottom-
most pixels.

Thus, by sorting the array that contains all objects in the descending order results in
objects with maximum value of y-co-ordinates i.e. the objects closest to the viewer at the top.

A depth map represents objects in decreasing intensity in greyscale with the objects at
the same level requiring the same grey shade to be assigned to them. Hence, after sorting, the
numbers of distinct levels are found by comparing the y-co-ordinates of the pixels.

After this, shade assignment i.e. white to the front-most component, intermediate
shades to other components behind it, proceeding towards black for background is done to
generate the final depth map.

Experimental Results:
Programming Tool: Matlab R2010b

Video input: “Wildlife in HD”, sample video in Windows 7 library
Type : Windows media audio/video file

Size : 25.0 MB

Length : 00:00:30

Step 1 output: 900 frames
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Frames 124 to 128 are as shown below:

Fig3.Frame Nos. 124 to 128 of the 900 Frames Generated as Step 1 Output
The maintained High Definition quality in each frame implies the conversion has been

efficient. The following are screenshots of step-wise output for frame no. 127 as input.

Fig4.Frame No. 127: Input Frame for Steps 2 -8
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info =
Filename: 'C:\Users‘\raj\Documents\MATLAB\frames\depthl27.ipeg
FileModDate: '30-Aug-2012 16:05:59°'
FileSize: 129393
Format: '"jpg'
FormatVersion: '°*
Width: 1280
Height: 720
BitDepth: 24
ColorType: 'truecolor'
FormatSignature: ''
HNumberOfSamples: 3
CodingMethod: "Huffman'
CodingProcess: 'Sequential'
Comment: {}

Fig5.Input Frame No. 127 Information

Fig 6.Step 2 Output: Background and Foreground Separated.Light Blue Region Indicates Separated

Background and Shades of Brown Indicate the Various Objects in Foreground

num_objects =

601

STATS =

601xl struct array with fields:
PixelIdxLisc
PixelListc
PixelValues

ISSN: 1857 — 7881 (Print) e - ISSN 1857- 7431

Fig7. (a)Step 3 Output: Total Number of Objects in Foreground (b) Statistical Structure Generated
for Further Processing based on Total Number of Objects

The statistical structure STATS generated as above gives information about properties
of each object such as the list of all pixels in each object, the total number of pixels in each
object and so on. These properties are used to find out the bottom-most pixel which is
required. The complete list of all pixels present in the 20™ object as an example is shown

below.
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| Command Window_ . [ Command Window. | Command Window
43 523 P
160 = 44 523 45 s1s
45 523 45 s1g
gz 45 523 39 518
47 523 40 518
33 s22 41 sie
¥ - 34 522 -
37 s22 i3 sie
: 38 s22 a5 sim
35 525 40 B2z 48 518
36 525 41 522 47 518
37 s2% 4z 522 45 518
38 525 R 49 s1E
41 525 49 522 S0 518
42 525 50 522 51 518
34 524 51 522 52 518
35 524 52 352z 53 518
36 524 53 si2 43 517
37 524 54 S22 44 517
3= 524 4z 521 45 517
40 524 43 32l 43 516
41 524 44 821 44 516
42 524 45 521 45 516
35 523 %6 521 43 515
35 523 50 =21 44 515
37 523 51 521 45 B1%
38 523 42 520 45 514
18 523 43 520 46 514
40 523 44 520 47 514
41 s23 46 520 48 514
50 520
e 42 523 e o o fx 49 514

49 513
30 513
49 512
0 s1z2

bottom y =

525

Fig8. Step 4 Output Example: Count of the Number of Pixels in the 20" Object, Sorted Array of All
Pixels of the 20" Object, Y-Co-ordinate of the Bottom-most Pixel of the 45" Object

Similar arrays are obtained for all 601 foreground components to identify their

respective bottom-most pixels’ y-co-ordinates. This array is again sorted as per the y-axis co-

ordinates to get the step 5 output as follows:

[ Command Window | |
s0s 708 222 634 292 €S ;g: :g:
C_sorved = S84 708 54 £33 253 6ls 195 01
ss1 707 125 633 270 615 234 601
1 720 520 7o€ s 63z 2T s o &0l
241 720 528 706 195 632 275 618
250 720 533 704 78 631 264 6ld 2:: :21
342 720 s24 703 202 629 268 613 332 601
446 720 518 639 316 629 282 613 384 €01
464 720 sz6 692 340 €29 274 612 EECIEEE)
i88 720 580 699 225 628 162 611 387 s8s
501 720 576 697 265 628 271 61 148 598
503 720 494 685 258 626 298 611 301 sas
512 719 25 &8l 266 626 388 611 313 598
516 719 355 &8l 267 626 190 610 315 538
566 T19 445 EEL 309 626 219 610 20 so8
see 719 548 €77 129 25 231 610 353 s%e
593 719 18 663 311 625 310 610 360 sos
556 T1® 451 €62 272 623 160 607 387 598
se0  71e 15 661 291 622 217 807 28 sa7
511 mMs 178 €52 289 622 295 607 108 587
515 715 127 £48 77 621 308 607 110 597
s21 Tis 134 642 343 621 387 607 121 587
507 714 LI -1 105 620 170 606
s08 T4 52 eal 220 s19 333 606 e e
T 362 597
412 713 65 €41 234 618 386 606 29 596
s00 11 82 641 281 618 215 805 244 596
504 711 82 &4l 287 618 221 605 396 596
583 Ti1 113 641 348 €17 249 605 156 595
514 710 61 639 4 616 304 605
525 T10 88 €38 90 626 181 604 bt
400 s9s
532 710 470 837 124 616 224 603
12 594
g 4sr Tos f 23 g3s F 306 e16 B s oems B oay  con
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o Window . | Comnand Window . Commond Window ___ | Command Window, .| Command Window
314 583
i24  ses i o 140 =78 70 ses 171 s4n
201 591 i ED: 5:5 135 565 188 543
207 591 Les  ses 331 578 177 565 214 543
220 591 318 se2 390 5:5 182 565 136 542
226 s91 146 ssn Les =74 414 565 1492 s42
385 574 161 563 197 542
21 sel 138 se1
373 581 99 572 189 562 26 541
153 se1
206 573 171 sel o mer
a6 =50 230 se1 . .
166 590 347 581 ;9: :’: 17 558 86 S41
322 5%0 161 se1 e s1e is8 558 122 541
330 590 t1e sen e 367 559 181 541
383 590 P oo 463 559 34 s39
218 589 583 se0 iy 558 € 539
336 589 P — :-" 5:1 182 558 108 s39
341 sas 123 s a; :11 389 ss8 167 539
74 587 1 s78 173 557 14 538
28 587 PO, 1:;’ ::g 208 557 31 s3e
183 587 &7 578 . . 583 557 44 538
48 se7 [ 335 55§ 53 s
323 586 . 411 570 13 553 a1 837
11 ses e g8 570 27 583 s9 537
= 9T 70 33 553 &3 337
SO is2 817 100 569
145 s8s P O 180 553 66 537
204 ses 70 517 418 583 149 837
aes =69 T 548 & s3s
Lo 375 517 371 ses
334 58S 380 577 10 547 21 535
oz ser 32 547 37 s3s
8L ses 147 576 83 seE
554 584 08 576 Do 37 547 187 838
24 83 1 s7s 123 o a2 547 186 538
115 583 116 578 23 546 28 534
223 583 N 200 ses 84 545 40 534
£ o a7z e fo 483 55 5 50 534

4 5 e
187 533 130 831
196 533 e
o5 52 179 21
2 7 $30
7 s 533 820
454 sm 2y 538
i3 830 46 813
44 530 e B8
1m4 530 €7 519
158 529 8 sie
165 529 o1  sie
3 an 176 518
mg, oa a7s S8
117 229 579 518
41 =0 ses st
AL 130 537
143 817

£ ST

538 127

528 516

s1 818

[T T

107 518

1§ 313

395 515

£23 318

527 51

5% 813

14 533

534 3113

430 A1

78 83
571 si3

L] 817
57 s
07 s
563 sil
522 S0
832 30
ELUE S
37 Lo
44 09
256 509
163 309
531 509
557 so8
LI -t
252 s07
WL 507
51%  s07
542 807
ELEEE -
zam  sos
23 305
8% sos
FLE T ]
300 0%
419 sos
LLHI -
562 508
210 Soa
5% 503
280 so3

mma

Lt
i)
195
455

193
LEE]

27
550
sn4
) |
359
539
£52
m
v
406
569
564
138
27
189
328
386
L ]
i3

24
385
474
358
w2
312
44
374
848
a7

423
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493
453
453
LE
491
451
481
450
480
450
450
490
488
485
4y
L1
485
488
Ll
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487
487
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ame
488
485
488
485

Command indow . CommandWindo | Command Window |

4 424 458

106 470 432 458 456 422
408 483 158 470 442 457 432 420
421 402 572 470 452 457 459 417
479 483 581 470 439 456 458 413
555 483 75 469 487 456 413 406
558 483 597 489 24 458
40 482 43 468 377 458 415 405
245 a8z 01 ses 551 458 416 403
317 482 45 487 434 453 418 402
3E0 482 478 467 443 452 431 402
172 481 578 467 155 450 427 401
235 481 800 467 447 450
242 482 60 466 351 449 432 3es
253 481 EERT T 440 449 436 393
404 481 495 466 a48 447 467 390
480 481 585 486 428 446 401 386
s 479 FI 17 E06 448 466 386
482 479 5 46S 462 445
292 478 12 465 468 445 age =8s
169 477 435 465 486 445 399 s82
208 477 490 465 498 444 363 330
377 477 425 463 509 444 364 315
403 477 64 462 438 442 457 281
405 47 440 462 437 441
553 477 574 462 451 439 460 281
599 477 422 461 481 437 UL
216 47¢ 45% 461 502 437
227 478 68 460 430 436
168 475 236 460 485 430 n distinet =
48 474 476 459 455 427 -
536 474 493 459 471 426

o s10 a3 Fo seq  sxa B aen  usn 218
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Fig10. Step 5-6 Output: Sorted List of All Objects in the Descending Order of Y-Co-ordinate of the
Bottom-most Pixel and the Number of Distinct Levels. Note the highlighted component no. 20 and its
pixel as found in the previous step
This list is used to find position of each object with respect to the viewer. The objects

with same bottom-most pixels values indicate they lie at the same level i.e. the same distance
from the viewer. Thus the same grey shade is allotted to them. In order to find the number of
shades required for this image, the number of distinct levels is found as shown in the above
figure. After shade assignment as explained in the algorithm, the final depth map generated is

as follows:

Figll. Step 7-8: Generated Depth Map for Frame No. 127
For more testing, a synthetic image was generated with objects of different shapes,

sizes, colours and positions. The above procedure was repeated for this image. The image

with its corresponding depth map is as follows:

Figl2.Experimental Image No.2: Created Synthetic Image and Its Generated Depth Map
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The experimental results for a variety of video frames are as follows:

Fig13.Experimental Video Frames and Generated Depth Maps*
The above results on various different types of inputs highlights the efficiency of the

algorithm to work on arbitrary videos without requiring any assumptions. Observe the slight
tilt in the first video frame (figure 13). The system has taken into consideration this tilt by
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assigning intermediate grey shades to objects along the tilt thus efficiently works at the
slightest difference in pixel levels. The objects in the background do not require any
processing for conversion to stereo hence even when identified form redundant information.
This algorithm excludes background objects from shade assignment, thus increasing

execution speed further.

Conclusion
Creating enough S3D material with stereoscopic cameras for 3D television is time

consuming & expensive. Thus the conversion of the vast collection of already existing 2D
images/videos to S3D is essential for 3D television. However extracting 3D information from
arbitrary 2D video is intractable at present since methods either make strong assumptions on
the 2D video (e.g., a static scene) or use human interactions to train a huge database of prior
knowledge. The proposed algorithm alleviates this problem by using a novel technique that
can be used over a wide range of videos without the constraints faced when using a single
monocular depth cue. At the same time, it avoids the usage of multiple depth cues, thus

'Observe the slight tilt in the first video frame (figure 13). The system has taken into
consideration this tilt by assigning intermediate grey shades to objects along the tilt thus
efficiently works at the slightest difference in pixel levels. Also this algorithm excludes
background objects from shade assignment, thus increasing execution speed further, reducing
the time consumed without affecting the efficiency of the depth maps produced. The
experimental results of the proposed algorithm tested on a High Definition video as also a
variety of video frames verify the effectiveness of the technique. The accuracy of converting
video to frames, background & foreground separation as also identify foreground objects play
a crucial role in the depth map generated. This algorithm excludes background objects from
shade assignment, which form redundant information, thus increasing execution speed
further.

Furthermore, it is intended to generate depth map for inter-frame information to
increase the execution speed and ytilize the generated depth maps along with original video

frames to create stereoscopic videos.
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