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Abstract 
 The so-called “Twin Paradox”, wherein a relativistic effect is 
hypothesized to produce verifiably different clock rates between bodies, has 
not been resolved to the satisfaction of many theorists. There has been an 
abiding difficulty with determining how arbitrary periods of uniform 
motion, when both twins will observe the other’s clock to move more 
slowly, can be resolved upon their reunion. Spacetime diagrams are used 
here to demonstrate visually and mathematically that there is a non-
paradoxical explanation for the supposed discrepancy that has not been 
previously proposed. 
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Introduction 
 The “paradox” of the twins dates from Einstein’s first paper on 
relativity (Einstein, 1905), although he only alluded there to a "peculiar 
consequence" of his theory which didn’t involve a re-uniting of twins, just 
distant clocks becoming un-synchronized by one’s acceleration. The 
consequence doesn’t properly belong in a discussion of Special Relativity, 
which is “special” because it excludes the consideration of accelerations, and 
Einstein had yet to fully explore relativistic implications of acceleration. But 
in subsequent investigations of inertial (non-gravitatioal) acceleration and 
gravitation he and others succeeded in attributing and confirming the 
“peculiarity.” The problem was taken up and coined a “twin paradox” by 
Paul Langevin (1911) and explicitly tied to the effect of inertial acceleration, 
and Einstein later (1918) discussed it in terms of gravitation.  
 Numerous experiments have confirmed that both inertial 
accelerations and gravitational effects produce a dilation, or slowing of a 
body’s clock, which unlike the relationship between bodies in relative 
uniform motion, is absolute – agreed upon from any frame of reference 
(Rossi, Hall 1941, Pound, Rebka Jr.  1959, Hafele, Keating 1972, Bailey, et 
al 1977, Botermann,  et al 2014). The plausibility of a “twin effect”, whereby 
people who undergo prolonged and intense accelerations can age 
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significantly less than those who don’t, has thus acquired a solid 
experimental foundation. 
 The alleged paradox derives from this: If a twin accelerates toward a 
distant star-system, decelerates at the destination, accelerates back toward 
earth, then decelerates for a reunion with the stay-at-home twin, it is believed 
that the traveling twin will have aged less than the stay-at-home, and it 
would be consistent with relevant experiments. (Some theorists have tried to 
attribute the effect not to the accelerations but to the traveling twin’s change 
of coordinate systems in the return (Laue 1913), but I’ll demonstrate below 
that this is not the case.) 
 A thought-experiment with twins that attributes the “peculiarity” of 
time dilation to acceleration works fine when the traveling twin is constantly 
accelerating or decelerating, and is not really a paradox, as it can fully 
account for the differences in age at the reunion. But if the traveling twin 
spends any time during the journey moving uniformly, the principle of 
Special Relativity applies, and each twin will regard the other’s clock as 
being only relatively dilated during such periods. A period of time in relative 
motion between the accelerations introduces this conundrum: If each twin 
has been observing the other’s clock moving relatively slower during any 
part of their separation, how can their clocks agree on that part of the 
journey, how can the mutual observation of the other’s relative dilations be 
resolved when they are reunited? 
 
A Visualization 
 The spacetime diagram used below to visualize the Twin problem 
differs from the conventional Minkowski diagram (1908) in that it plots a 
world-line (the motion of a body in spacetime) of an observed body 
according to its own clock rather than the clock of the observer. 
(Characteristically, the Minkowski diagram portrays a ray of light as moving 
in spacetime at 1 light-second per second (hence the “light-cones”), but 
according to Relativity light moves at a relative zero seconds per light-
second, while the observer records the motion in 1 second.) This relativistic 
flaw in the Minkowski diagram has been discussed elsewhere (Arnold 2015), 
but the alternative will be used below without comparison and 
argumentation, proceeding simply on its evident utility.  
 A diagram (figure 1) conforming to Special Relativity and the 
Lorentz transformations, and treating both space and time as relative, 
provides a heuristic representation by means of which the relativistic 
relationship can be visualized as Minkowski originally intended, so that 
“physical laws might find their most perfect expression” (Minkowski 2008, 
p.76 ).  
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 The x-axis in figure 1 represents space calibrated in light-years (ly), 
while its perpendicular, the y-axis, represents time calibrated in years (yr) – 
both according to observer A, who is considered to be at rest in space and 
moving in time along the y-axis. Vector B represents a body in motion 
relative to A. Body B moves from the vicinity of A at a velocity which will 
take it 4 ly in 5 yr according to A with an elapsed time of 3 yr on B’s clock. 
The x’ and y’ axes represent B’s coordinate system. 

 
figure 1 

An alternative to Minkowski’s spacetime diagram. The 
world-line of the observed body B is projected as 
moving in space as measured by the observer A and in 
time both according to B’s own clock and the clock of 
A. According to Special Relativity, a body moving at 
80% the speed of light will go 4 light-years (ly) by A’s 
reckoning and in 5 years (yr) on A’s clock, but B’s 
clock will be observed by A to have elapsed only 3 yr. 

 The relativistic relationship can be expressed by t' = t √(1-v2) per a 
Lorentz transformation (with t being the observer’s time, t’ the observed 
time, and v the relative velocity proportional to c), which in the above 
example yields 5*√(1-.82) = 3.  Strictly speaking therefore, body B travels a 
relative 4 ly in 5 yr according to A, with an elapse of 3 yr according to B’s 
proper time (its clock is observed by A to elapse 3 years). 
 (It will be relevant in later discussion to note that un-accelerated 
world-lines as in figure 1 are necessarily equal in length. This is because the 
world-line of an observer relates to the observed body’s time and velocity as 
the hypotenuse to the sides of a right triangle (t = √(t’2 + x2)), with t’ as the 
observed clock and x as the distance traveled by the observed body according 
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to the observer), and the world-line of the observed body is the hypotenuse 
of the triangle.) 
 The spacetime diagram works to represent the relationship 
determined by the Lorentz transformations only if a body moving uniformly 
(or “at rest”) in space is actually moving, time-wise, perpendicular to space 
in its own coordinate system, thus providing a basal frame of reference in the 
diagram. Given that a body observed to be in relative motion is also moving 
along its time-axis perpendicular to space in its own coordinate system, its 
space axis must be different than that of a body taken to be the observer at 
rest. Accordingly, figure 2 shows two reference frames at once, with A and B 
each moving in time perpendicular to space according to their own 
coordinate system. It depicts, as the Minkowski diagram cannot, the strange 
phenomenon wherein each observer measures the other’s clock as moving 
more slowly than her own. By rotating the diagram, the mirror image of A’s 
perspective can be seen from that of B. 

 
figure 2 

Two bodies in two different coordinate systems, x-y 
and x’-y’, are shown to mirror their mutual relativistic 
effects. By rotating the diagram either system can be 
represented as at rest in space and the other in relative 
motion with a slower clock, and each by the same 
measures. 

 Figure 2 is a fully accurate depiction of the relativistic relationship. It 
expresses the duality that students of relativity often have difficulty 
comprehending: It is because each body has its own orientation in the 
spacetime continuum that each mirrors the relativistic effects of the other.  
 
Analysis 
 Granting the absolute effects of acceleration and gravitation on 
clocks, as has been satisfactorily confirmed by experiments, and given the 
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entirely relative effects of un-accelerated (uniform) motion, any uniform 
motion that might be included in a test of the so-called Twin Paradox can be 
considered in abstraction from the accelerations. By doing so the problem of 
mutual time dilation during periods of uniform relative motion and its 
reconciliation at the twins’ reunion can be isolated and more easily resolved.  
 Figure 3 takes the perspective of a stay-at-home Twin A’s coordinate 
system. World-lines A1 and B1 represent the spacetime paths of the twins in 
the uniform part of Twin B’s journey to a distant star-system according to 
Twin A; vectors A2 and B2 are the world-lines of the twins in the uniform 
part of B’s return trip, also according to Twin A. As in figure 1, the 
Pythagorean 3-4-5 relationship that obtains from a relative velocity of .8c is 
used for the sake of simplicity and clarity.  

 
    figure 3 

Uniform portions of the journey of Twin B to-and-
from a distant star-system are shown from the 
perspective of the stay-at-home Twin A. Vectors A1 
and B1 represent the un-accelerated away segment of 
B’s journey, and vectors A2 and B2 represent the 
period of B’s un-accelerated return segment. At the 
5 year mark on Twin A’s clock corresponding to her 
observation of the uniform part of Twin B’s journey 
away, the clock of the latter indicates that she has 
begun her deceleration near the destination after 3 
years of moving uniformly. Following her 
deceleration and acceleration for the return home, 
she coasts for 3 years before beginning her 
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deceleration to earth, where both agree that 6 years 
of uniform motion have elapsed. 

 Figure 3 illustrates how Twin A can agree that Twin B’s clock ends 
up with an identical recording of 6 years moving uniformly: Because Twin B 
had already began her return, according to A’s clock, two years prior to A’s 
corresponding time of 5 years, they both agree that Twin B has spent 6 years 
moving uniformly while A was waiting at home for 6 years.  
 (Note that Twin B’s vectors are drawn to intersect the spacetime 
points of destination and reunion for the sake of clarity, but it would be the 
decelerations subsequent to the uniform segments that would actually mark 
those arrivals.) 
 There are several indications that figure 3 is an imperfect 
representation of two-way periods of uniform motion in spacetime: The 
diagram isn’t rotate-able, as was figure 2. To accurately treat two reference 
frames that separate and re-converge it would be necessary to somehow 
balance their perspectives, otherwise the time dilation observed by one is 
treated as more “real” than the other. But Twin A is portrayed as having been 
absolutely at rest and Twin B as in absolute motion in the un-accelerated 
segments spanned by the diagram, with no way to reverse or balance their 
roles, because one twin reverses directions while the other maintains her 
continuous direction in spacetime – one world-line thus forms an angle, and 
the other does not. Another problem is that the sum of the lengths of the 
twins’ world-lines are not equal like they are in figures 1 and 2, as Twin B’s 
vectors add to 10 units (√(32+42) in each direction) compared to 6 units for 
A’s. This is because Twin B is moving in A’s coordinate system according to 
A’s measure of space, which requires the representation of B to conform as-
if to an absolute space metric. The Lorentz transformation for the relative 
measure of space corresponding to the transformation related to time is x' = x 
√(1-v2), which in the example would be 4*√(1-.82) = 2.4 ly, which is Twin 
B’s measure of the space traversed in each direction per 3 yr period. Unlike 
Twin B’s proper time (3 yr each way in the example), her own measure of 
the distance involved is not directly observed by Twin A, and isn’t therefore 
represented (or representable) in a spacetime graph depicting A’s 
observations, and this is what accounts for the over-extension of Twin B’s 
world-lines in figure 3. 
 The unavoidable spatial imperfections of figure 3 aside, what is 
important for understanding the relationship between the twins’ clocks is that 
their relative time-frames are accurately represented, consistent with the 
temporal expression of the Lorentz transformations. The twins’ clocks are 
not simultaneous except at the beginning and end of their relative motion, 
but they are correlative at every moment in between, in alignment along 
Twin A’s space axis (x), as for example when the distance from A’s x-axis to 
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Twin B’s position in spacetime is at the 3 yr mark, A’s clock is likewise 3 yr 
away from its original point in time on its space-axis. Therefore, regardless 
of the periods and velocities in uniform relative motion during the twins’ 
separation, their clocks for such periods will necessarily remain correlative, 
and will be synchronous at their reunion. 
  
Discussion 
 Given the inherent spatial distortion in figure 3, it may be helpful to 
consider a rotate-able, although physically impossible perspective on the 
twins’ relative motion, one that can transcend the limitation of a realistic 
single reference frame as in figure 3.  
 Figure 4 takes an unnatural but more comprehensible perspective as 
of a demiurge, or if it is preferred, a God’s-Eye view of the spatial 
relationship between the twins, illustrating that except when Twin B is 
accelerating, one twin isn’t at rest while the other is in motion; both are at 
once relatively at-rest and relatively in-motion. 

 
   figure 4 

A composite and transcendent perspective on the 
twins’ adventure provides a comprehensible but 
unrealistic representation of the un-accelerated 
portion of their mutual separation and 
reconvergence. The lengths of their world-lines are 
equal, as are the durations of their clocks. 

 The illustration of uniform motion in figure 4 balances the to-and-
from segments for the sake of clarity, but the periods of uniform motion to-
and-from needn’t be equal for the final reckoning of clocks to be in 
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agreement. Given the correlative relationship between clocks discussed 
above, the convergent vectors can have a different length than the divergent 
vectors. And there needn’t be any uniform motion at all in one direction for 
concurrency to be maintained; such a situation can be envisioned as 
involving only one period of uniform motion, using one pair of the vectors in 
figure 4 – vectors A1 and B1 or vectors A2 and B2. In each case, no matter 
how long or how relatively fast their uniform motion in either direction, 
there is always a correlation between clocks. 
 
Conclusion 
 The “Twin Effect” has been shown to be entirely explicable in terms 
of Relativity Theory, and supported by the principle of correlative clocks 
entailed by relative motion. The experimentally confirmed effects of 
acceleration are neither complicated nor in any way affected by intermittent 
periods of uniform motion in space due to the correlation of relative motion 
in time.  
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