
European Scientific Journal January 2016 edition vol.12, No.3  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

67 

Bifurcation Analysis of a Model of Cancer 
 
 
 

Abdo M. Al-Mahdi 
Department of Mathematics and Computer Science 

Faculty of Science, Ibb University, Yemen 
Mustafa Q. Khirallah 

Department of Mathematics and Computer Science 
Faculty of Science, Ibb University, Yemen 

Department of Mathematics, Faculty of Science and Arts 
Najran University, Saudi Arabia 

 
doi: 10.19044/esj.2016.v12n3p67    URL:http://dx.doi.org/10.19044/esj.2016.v12n3p67 

 
Abstract 
 In this paper, we study the bifurcation of a cancer model with 
completely unknown parameters. The bifurcation analysis of the biologically 
feasible steady-states of this model will be discussed. It is proved that the 
system appears to exhibit many cases of bifurcation for some ranges of 
system parameters. Numerical analysis and extensive numerical examples of 
the bifurcation for some ranges were carried out for various system 
parameter values and different initial densities. 
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Introduction 

Mathematics has contributed in a small way to the understanding of 
cancer by analysis and simulation of cancer models directed at discovering 
new insights. This is well evidenced by the publication of a special issue of 
the journal, Discrete and Continuous Dynamical Systems Series B (Horn and 
Webb, 2004), titled “Mathematical Models in Cancer,” which contains 
twenty one papers concerned with modeling various types and aspects of 
cancer (Takeuchi et al., 2007). 

However, cancer is one of the major diseases that befalls humanity. 
Cancer arises from a mutation of genes that are responsible for the correct 
reproduction of cells (Rajib and Alam, 2012). The final result is an invasive 
malignancy —a tumor—which grows uncontrolled. Classic treatments 
include the surgical removal of the tumor, radiotherapy, immunotherapy, and 
also chemotherapy, which involves the infusion of drugs that inhibit or stop 
the growth of tumor cells (Pillis et al., 2006). 

http://dx.doi.org/10.19044/esj.2016.v12n3p67
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Cancer is one of the greatest killers in the world today. Hence, the 
control of tumor growth requires special attention. The response of the tumor 
disease to treatment depends on many factors, including tumor severity and 
patient’s immune response. The mathematical modeling of cancer self-
remission and tumor has been approached by a number of researchers using a 
variety of models over the past decades. 

Tumor cells are characterized by a vast number of genetic and 
epigenetic events leading to the appearance of specific antigens called 
neoantigens which trigger an antitumoral response by the immune system. 
The characteristic feature of cancer is its ability to metastatize, causing tissue 
disruptions. Thus, this further simulates the immune system. All these 
observations have led to the formulation of a hypothesis of the immune 
system that may eliminate tumors (Gohary and Alwasel, 2009). 

Cancer is one of the most difficult diseases to treat clinically, and it is 
considered one of the main causes of death. It is the second most fatal 
disease after cardiovascular diseases. The World Health Organization 
(WHO) estimates that the annual cancer-induced mortality number exceeds 
six million people. Accordingly, the fight against cancer is of major public 
health interest. For this and other economy-related reasons, a great research 
effort is underway to understand the dynamics of cancer and to predict the 
impact of any changes on the system reactors. Hence, mathematical models 
are required to help design therapeutic strategies. In cancer modeling, we 
have to care about the scaling problem, where the class of equations used to 
describe the model are to be determined. Indeed, there are three natural 
scales, which are connected to the different stages of the disease and have to 
be identified (Rihan et al., 2012). 

The first is the subcellular or molecular scale, where we focus on 
studying alterations in the genetic expressions of genes contained in the 
nucleus of a cell. Based on the findings of two journals of applied 
mathematics, we know that special signals are received by the receptors on 
the cell surface and transmitted to the cell nucleus. The second is the cellular 
scale, which is an intermediate level between the molecular and the 
macroscopic scale. The third is the macroscopic scale, where we deal with 
heterogeneous tissues. In the heterogeneous tissues, some of the layers 
constituting the tumor, like the external proliferating layer, the intermediate 
layer, and the inner zone with necrotic cells, may occur as islands. This leads 
to a tumor comprised of multiple regions of necrosis, engulfed by tumor cells 
in a quiescent or proliferative state (Bellomo et al., 2008). In the case of 
macroscopic scale, we focus on the interaction between the tumor cells and 
normal cells, e.g., immune cells and blood vessels in each of the three layers. 
For more details about the description of the scaling problem and the passage 
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from one scale to another, we refer to Bellomo et al. (2008) and Chaplain 
(2006).  

Vaccines for cancer represent an alternative approach to the use of 
standard drugs. Cancer vaccines work differently from traditional vaccines, 
which prevent diseases by instructing the immune system on how to 
recognize and destroy a particular pathogen, in that they enlist the patient’s 
immune system to destroy existing cancer cells. While simple in concept, the 
development of products has proven difficult. Therefore, the problems 
specially lie in eliciting sufficient, tumor-selective stimulation of an immune 
system that is already tolerant of cancer cells (Zou, 2005). 

In the field of mathematical biology, it is possible to describe certain 
phenomena by mathematical models and derive knowledge from them. 
Specifically, the human immune system consists of detection systems and 
required weapons. These systems play important roles in defending against 
most pathogens. Cancer immunotherapy is the use of the immune system to 
reject cancer. The main premise is stimulating the patient’s immune system 
to attack the malignant tumor cells that are responsible for the disease 
(Ghomanjani, 2012). 

A cancer treatment by immunotherapy is important in 
biomathematics. Immunotherapy (also called biological therapy and 
biotherapy) uses the body's own immune system to fight cancer and to 
reduce treatment related side effects. One of the most challenging tasks in 
constructing a mathematical model of cancer treatment is the calculation of 
biological parameters from empirical data. This task becomes increasingly 
difficult if a model involves several cell populations and treatment modalities 
(Pillis et al., 2009). 

The idea of manipulating immunity to cure cancer has been pursued 
in the laboratory, and has been clinically tested for decades (Zvia and 
Stanimir, 2012). Several papers have thoroughly examined mathematical 
models of immunotherapy interactions. As explained in Nani and Freedman 
(2000), the author presents a model of cancer treatment by immunotherapy 
that sees normal cells and cancer cells as competitors for common resources. 
In addition, the anti-cancer cells are regarded as predators to the cancer cells. 

 The paper has the following structure. In section 2, the mathematical 
model and the corresponding governing equations are written. In section 3, 
the equilibrium points with their eigenvalues are analyzed. In section 4, the 
stability analyses of the equilibria 𝐸1, 𝐸2, and 𝐸3 are studied, while the time 
series and face planes of the system behavior near some critical points with 
fixed values of parameters are done in section 5. In section 6, we give an 
analytical investigation of bifurcation cases and draw many bifurcation 
diagrams for those cases and others. Some numerical results are given in 
section 7. Finally, in section 8, conclusions from this work were drawn. 
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The Model 
 Gohary and Alwasel (2009) developed a model for spontaneous 

tumor regression and progression which is an interaction between the 
anticancer agent cell, lymphocytes, and macrophages, which are natural 
killer cells that destroy malignant cells. Furthermore, they constructed the 
spontaneous tumor regression and progression system as a prey–predator like 
system.  

 From the resource, the following assumptions were considered 
throughout (Gohary and Alwasel, 2009): 
 1. The predators are T-lymphocytes and cytotoxic macrophages/natural 

killer cells of immune system, which attack, destroy, or ingest tumor cells. 
 2. The preys are tumor cells which are attacked and destroyed by immune 

cells. The predator has two states, hunting and resting, and destroying the 
prey. The tumor cells are caught by macrophages which can be found in 
all tissues in the body, and these tumor cells circulate in the blood system. 

 3. Macrophages absorb tumor cells, eat them, and release a series of 
cytokines which activate the resting T-lymphocytes that coordinate the 
counter attack. 

 4. The resting predator cells can also be directly stimulated to interact 
with antigens. These resting cells cannot kill tumor cells, but they are 
converted to a special type of T-lymphocyte cells called natural killer or 
hunting cells. In addition, they begin to multiply and release other 
cytokines that, moreover, stimulate more resting cells. 

 5. This conversion between hunting and resting cells result in a 
degradation of the resting cells undergoing natural growth and an 
activation of hunting cells. 

 6. To introduce the mathematical model, we assume that tumor cells are 
being destroyed at a rate proportional to the tumor cells densities 
according to the law of mass action. Moreover, we assume that the resting 
predator cells are converted to the hunting cells either by direct contact 
with them or by contact with a fast diffusing substance produced by 
hunting cells. We consider that once a cell has been converted, it will 
never return to the resting stage. Hence, active cells die at a constant 
probability per unit time. 

 7. Finally, we assume that during the resting phase, a predator and tumor 
cells are nutrient rich, undergoing mitosis, and the tumor cells have a 
proliferative advantage over the normal cells. If 𝒙(𝑡), 𝒚(𝑡), and 𝒛(𝑡) 
denote the densities of tumor cells, hunting predator cells, and resting 
predator cells at time t, respectively, the resulting dynamic system can be 
described by the following set of non-dimensional, nonlinear ordinary 
differential equations: 
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2 3

4 5 6

1 ( (1 ) ),
( ),
( (1 ) ).

x x a x y
y y a z a
z z a z a y a

′ = + − −
′ = −
′ = − − −

                                           (2.1)      

 
The Equilibria 
 The equilibria are found by solving the system: 

 

1

2 3

4 5 6

1 ( (1 ) ) 0
( ) 0
( (1 ) ) 0

x a x y
y a z a
z a z a y a

+ − − =
− =
− − − =

    (3.1) 

 Therefore, this gives six equilibrium points as follows:  

𝐸1  = [ 12  �1 + �1 +   4  
𝑚1

 �   ,0 ,0 ],   𝐸2  = [ 12  �1 + �1 +   4  
𝑚1

 �   ,0 , (1 − 𝑚6
𝑚4

) ] 

𝐸3  = [ 1
2𝑚1

 ((𝑎1 − 𝑥2 )

+ �(𝑎1 − 𝑥2)2 + 4𝑎1     ) , �
𝑎4
𝑎5

 �1 −
𝑎3
𝑎2

 –
𝑎6
𝑎4

 � �   ,
𝑎3
𝑎2

] 

𝐸4  = � 12  �1 −�1 +   4  
𝑚1

 �   ,0 ,0 �,    𝐸5  = [ 12  �1 −�1 +   4  
𝑚1

 �   ,0 , (1 − 𝑚6
𝑚4

 )] 

𝐸6  = [ 1
2𝑚1

 ((𝑎1 − 𝑥2 )

−�(𝑎1 − 𝑥2)2 + 4𝑎1     ) , �
𝑎4
𝑎5

 �1 −
𝑎3
𝑎2

 –
𝑎6
𝑎4

 � �   ,
𝑎3
𝑎2

] 

 
Analytic Study of the Equilibria for the Biologically Feasible  
𝐸1  is biologically feasible. 
𝐸2  is biologically feasible if       1 − 𝑚6

𝑚4
> 0  or  𝑎6 < 𝑎4 … (1) 

𝐸3 is biologically feasible if 
𝑚4
𝑚5

 �1 − 𝑚3
𝑚2
� − 𝑚6

𝑚5
 ≥ 0 or  1 − 𝑚3

𝑚2
− 𝑚6

𝑚4
 ≥ 0 and  𝑚3

𝑚2
+ 𝑚6

𝑚4
 ≤ 1 … (2) 

 However, we conclude from equations (1) & (2) that 𝑎3 <
𝑎2   &   𝑎6 < 𝑎4 … (3) 
 Under these conditions, we discuss the stability of Equilibria 
𝐸1  ,𝐸2  ,𝑎𝑛𝑑 𝐸3   
 
The Eigenvalues of the Equilibria 
 We will evaluate the eigenvalues of the three biological feasible 
critical points, and we note that these points are symmetric with the other 
equilibria. 
The Eigenvalues of 𝑬𝟏   
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𝜆11 = −�𝑎12 +  4𝑎1  
𝜆12 = −𝑎3 
𝜆13 =  𝑎4   − 𝑎6 
 
The Egenvalues of  𝑬𝟐   

𝜆2 1 = −�𝑎12 +  4𝑎1             

𝜆22 = (𝑎2 𝑎4  − 𝑎3𝑎4 − 𝑎2𝑎6)/𝑎4       , 
𝜆23 = 𝑎6 − 𝑎4 
 
The Egenvalues of  𝐄𝟑   
𝜆31 = −𝑘 ,  
𝜆32 = �−𝑎3𝑎4 + �𝑎32    𝑎42    −  4𝑎22    𝑎3     𝑥2� /2𝑎2  

𝜆33 = �−𝑎3𝑎4 −  �𝑎3   
2  𝑎42 −  4𝑎22   𝑎3𝑥2�  /2𝑎2 

Where; 
𝑘 = �(𝑎1 − 𝑥2)2 + 4𝑎1 
𝑥2 = [𝑎4(𝑎2 − a3) − 𝑎2a6]/𝑎2𝑎5  
 
Stability Analyses 
The Stability of  𝑬𝟏   
 The eigenvalues of 𝐸1  are as follows: 

𝜆11 = −�𝑎12    +  4𝑎1   , 𝜆12 = −𝑎3  , 𝜆13 =  𝑎4   − 𝑎6 
We see that the eigenvalue  λ13 is positive, so 𝐸1  is unstable. 
 
The Stability of  𝑬𝟐    
 The eigenvalues of E2  are as follows: 
 λ2 1 = −�a12    +  4a1 ,  λ22 = (a2 a4  − a3a4 − a2a6)/a4  and 
 λ23 = a6 − a4 . We see that λ2 1 < 0 and  
𝜆22 = (𝑚2 𝑚4−𝑚3𝑚4−𝑚2𝑚6)

a4
= a2 �1 − a3

a2
− a6

a4
� = 𝑎2[1 − (𝑚3

𝑚2
+ 𝑚6

𝑚4
)] >0 

𝜆23 = 𝑎6 − 𝑎4 < 0, so 𝐸2 is unstable. 
 
The Stability of  𝑬𝟑   
 The eigenvalues of 𝐸3 are as follows: 
𝜆31 = −𝑘, where  𝑘 = �(𝑎1 − 𝑥2)2 + 4𝑎1,  
𝜆32 = �−𝑎3𝑎4 + �𝑎32    𝑎42    −  4𝑎22    𝑎3     x2�  /2𝑎2 

𝜆33 = �−𝑎3𝑎4 −  �𝑎32    𝑎42    −  4𝑎22    a3𝑥2�  /2𝑎2 
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We observe that for  𝜆31, we see: 𝑘 > 0 and 𝜆31 is negative, and for 
𝜆32 and  𝜆33, we observe that: 

 i)   𝜆32 and  𝜆33 are real and negative, if 𝑎3𝑎42 ≥  4𝑎22 𝑥2 . 
ii)   𝜆32 and 𝜆33 are complex with negative real parts, if  𝑎3𝑎42 <
4𝑎22 𝑥2  or    𝑎3𝑎4 < 4𝑎22 � 1 −   𝑚3

𝑚2
− 𝑚6

𝑚4
 �. 

Then, 𝐸3 is always unstable.  
 

Time Series and Phase Plane     
 Here, we give clear pictures of the behavior of the system, 
numerically, by drawing figures of time series and phase plane with different 
values of parameters and initial values:  

 
 
 
 
 

t vs x t vs y 

t vs z 
Figure 1a. Phase plane 1)x vs y. 2)x vs z. 3)y vs z. a1=1.5, a2=2, a3=1, a4=0.5, a5=0.1, a6=0.25 

initial values (0.2, 0.2, 0.2) 
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Figure 1b. Phase plane 1)x vs y. 2)x vs z. 3)y vs z. a1=1.5, a2=2, a3=1, a4=0.5, a5=0.1, a6=0.25 
initial values (0.2, 0.2, 0.2) 
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Figure 4. Time series, the parameter values: a1=20, a2=30, a3=1, a4=2, a5=0.5, a6=0.2,  the initial 
values: 

 (x0, y0, z0)=( 0.05, 0.2,0.2). 

Figure 5 .  phase plane, the parameter values: a1=20, a2=30, a3=1, a4=2, a5=0.5, a6=0.2,  the initial 
values: 

 (x0, y0, z0)=( 0.05, 0.2,0.2). 

 

 

 

 

 

 

 

 

 

 

 

Bifurcation  analysis  
 We first see that E1 and 𝐸2 are unstable with no cases under the 
conditions of the biologically feasibility. 
 But the third equilibrium E3 has many cases under the conditions of 
the biological feasibility: 
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 1) if 𝑎3 𝑎4 ≥ 4𝑎22  �1 −   𝑚3
𝑚2
− 𝑚6

𝑚4
�, then all the eigenvalues are real 

and negative i.e.,  
  𝜆31 < 0 , 𝜆32 < 0  and 𝜆33 < 0 
 Thus, E3  is stable. 
 2) if 𝑎3 𝑎4 < 4𝑎22  �1 −   𝑚3

𝑚2
− 𝑚6

𝑚4
�     

 Then, 𝜆31 < 0, and 𝜆32 and  𝜆33 are complex with a negative real 
part. 
 Thus, E3 is stable. 
 
Essential Concepts 
 Variations in the control parameters of dynamic systems generate 
completely new, long-term patterns of motion. Qualitative changes in the 
topological texture of the trajectories in the phase space as a result of a 
change in one or more control parameters are called bifurcations and the 
appertaining critical parameters bifurcation values. For example, an original 
stable state of equilibrium can become unstable for a critical value, µ𝑜𝑟, of 
the control parameter and can give rise to two new stable states of 
equilibrium.  
 It is the purpose of a bifurcation analysis to determine the bifurcation 
value  µ𝑜𝑟 and to construe the new bifurcating solutions for µ > µ𝑜𝑟. A 
systemization of the bifurcating solutions is possible for one-dimensional 
systems with one control parameter. However, it is extremely difficult to 
develop higher-dimensional ones with several parameters. As a result, there 
is little research in this area (Argyris and Hase, 1994).  
 In this section, we will investigate the eigenvalues of the above three 
critical points E1,  E2 , and E3 , since the other three critical points are 
symmetric with these points. 
 
Bifurcation Cases 
 Using the concepts of bifurcation, degenerate critical points, and 
bifurcation parameter values, some analytical investigation given include 
many cases with numerical aspects:    
i) Case 1 
 When 𝑎4 =  𝑎6  , we see that: 
𝜆13 =  𝑎4 − 𝑎6 = 0, and E1 has a zero eigenvalue and is a bifurcation point 
where a bifurcation arises. At this value of parameters also, 𝜆23 = 𝑎6 − 𝑎4 =
0, and E2 is a bifurcation point which gives a special phenomenon that is two 
bifurcation points with the same bifurcation value. We observe that E2 
merges with E1  and becomes the same, i.e.   
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𝐸2  = [ 12  �1 + �1 +   4  
𝑚1

 �   ,0 ,1 − 𝑚6
𝑚4

 ]changes to become E1  =

�1
2

 �1 + �1 + 4
𝑚1

 � , 0 ,0�. Also, E5  merges with  E4  i.e E5 changes to become 

𝐸4  = � 12  �1 −�1 +   4  
𝑚1

 �   ,0 ,0 � ,  and E3 changes to become non 

biologically feasible. Since y3 = − 1
𝑚5

𝑚3
𝑚2

< 0 , then the total number of 
equilibria changes from 6 to 4. Thus, the case a4 = a6 is a bifurcation case. 
Numerically, when fixed values of parameters satisfy the biological 
feasibility, we verify the situation above. First, taking the values with 
a6 ≠ a4 : a1=0.4, a2=9.9, a3=0.1, a4=5.6, a5=4.6, a6=0.5, gives the 
following critical points E1  = (2.1583, 0, 0) , E2 = (2.1583, 0, 9179) 
E3 = (0.9344, 1.0964, 0.0101), E4 = (−1.1583, 0, 0), 
𝐸5 = (−1.1583, 0, 9179), and  𝐸6 = (−2.6754, 1.0964, 0.0101), that is six 
points. And calculating the eigenvalues of the three first critical points E1, 
E2, and E3 gives the following: For E1, 𝜆11 = −0.1, 𝜆12 = −1.3266,
and 𝜆13 = 5.1, for E2, 𝜆21 = −5.1, 𝜆22 = 8.9161, and 𝜆23 = −1.3266, and 
for E3, 𝜆21 = −1.4439,  𝜆22 = −0.0283 +  0.7096i, and 𝜆23 = −0.0283 −
 0.7096i. 
 Second, taking the values with 𝑎4 =  𝑎6   : a1=2, a2=0.5, a3=0.4, 
a4=0.5, a5=0.8, a6=0.5 gives the following critical points: E1 =
(1.3660, 0, 0), E2 = (−0.3660, 0, 0), E3 = (1.5687,−0.5, 0.8), and 
E4 = (−0.3187,−0.5, 0.8), that reduce to four points. And calculating the 
eigenvalues of the first critical point, E1 in this case, gives 
  𝜆11 = −0.4,    𝜆12 = 0,    𝜆13 = −3.4641,  

 
 
 
 

Figure 6. Bifurcation Diagram of Case 1 
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ii) Case 2 
 When  𝑚3

𝑚2
+ 𝑚6

𝑚4
= 1,  we observe that   a6

a4
= 1 − a3

a2
 and 𝑥2 = 0, which 

gives λ22 = 0. Thus, E2  has a zero eigenvalue, and we observe that  λ32 = 0 
and E3 has also a zero eigenvalue in the same time. 
 And then E3 merges with E2, and E6 merges with E5. Thus, the 
number of equilibria changes from 6 to 4. Numerically, as in case 1, when 
the fixed values of parameters satisfy the biological feasibility, we verify the 
situation above. First, taking the values with a6 ≠ a4(1 − a3

a2
) : a1=0.4, 

a2=9.9, a3=0.1, a4=5.6, a5=4.6, a6=0.5, gives the following critical points 
E1  = (2.1583, 0, 0) , E2 = (2.1583, 0, 9179), 
E3 = (0.9344, 1.0964, 0.0101), E4 = (−1.1583, 0, 0), 
𝐸5 = (−1.1583, 0, 9179), and 𝐸6 = (−2.6754, 1.0964, 0.0101), that is six 
points. And calculating the eigenvalues of the first three critical points E1, 
E2, and E3  gives the following: For 
E1, 𝜆11 = −0.1, 𝜆12 = −1.3266, and 𝜆13 = 5.1, for E2, 𝜆21 = −5.1, 𝜆22 =
8.9161, and 𝜆23 = −1.3266, and for E3, 𝜆31 = −1.4439, 𝜆32 = −0.0283 +
 0.7096i, and 𝜆33 = −0.0283 −  0.7096i. 
 Second, taking the values with a6 = a4(1 − a3

a2
) : a1=2, a2=0.5, 

a3=0.4, a4=0.5, a5=0.8, a6=0.1 gives the following critical point E1 =
(1.3660, 0, 0), E2 = (0.3660, 0, 0), E3 = (1.3660, 0, 0.8), and E4 =
(−0.3660, 0, 0.8), that reduce to four points. And calculating the 
eigenvalues of the third critical point, E3, gives the following: 𝜆31 = −0.4,  
𝜆32 = 0, and 𝜆33 = −3.4641.  
 Here, a6 = a4(1 − a3

a2
) leads to taking a6 as a bifurcation parameter. 

We draw the bifurcation diagram in this case by using fixed values of the 
other parameters as shown in figure 7 below. 

 
 

Figure 7. Bifurcation Diagram of Case 2 
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Figure 8. Bifurcation Diagram. The parameter values: a1=0.16666, a2=2, a3=1, a4=1, 
a5=2 and a6 is the bifurcation parameter. The initial values: (x0, y0, z0)=(3.1, 0.1, 0.6). 

 

iii) Case 3: Composition of Cases  
 This is a complicated case since many elements relate together in the 
eigenvalue 𝜆32 = �−𝑎3𝑎4 +  �𝑎32    𝑎42    −  4𝑎22    𝑎3     x2� /2𝑎2 which 
gives different influences as follows: 

1- When 𝑎4 =  𝑎6  , then  x2 < 0, which leads 𝜆32 to becoming positive, 
and the critical point E3 becoming an unstable saddle point. 

2- When  𝑚3
𝑚2

+ 𝑚6
𝑚4

= 1, then  x2 = 0, which leads 𝜆32 to becoming zero, 
and the critical point E3 becoming a bifurcation point. 

3- When  𝑚3
𝑚2

+ 𝑚6
𝑚4

< 1, then  x2 > 0 and  𝑎3 𝑎4 ≥ 4𝑎22  �1 −   𝑚3
𝑚2
− 𝑚6

𝑚4
� 

lead 𝜆32 to becoming real and negative, and the critical point E3 
becoming a stable node point. 

4- When  𝑚3
𝑚2

+ 𝑚6
𝑚4

< 1, then  x2 > 0   and  𝑎3 𝑎4 < 4𝑎22  �1 −   𝑚3
𝑚2
− 𝑚6

𝑚4
� 

lead λ32 to becoming complex with negative real parts, and the 
critical point E3 becoming a stable focus point. 

 These different elements give good pictures of the bifurcation 
phenomena, using different values of the arbitrary parameters and initial 
values as the following figure shows.   
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 And then, we give clear pictures of some sub regions of the above 
diagrams by enlarging some of its parts as follows: 

 

 
Other Bifurcation Diagrams 
 In the following cases, we get other bifurcation diagrams arising at 
certain values of the system parameters which are different from the above 
cases, as shown in the following two figures. 
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Figure 9. Bifurcation diagram. The parameter values: a2=2, a3=1, a4=0.5, 
a5=0.1, a6=0.21 and a1 is the bifurcation parameter. The initial values: (x0, y0, 

  

 

 
 Here, we get another case that is a strange picture of a bifurcation 
diagram where two bifurcation phenomena arise in the same range of the 
bifurcation parameter a1 with certain values of the other parameters. The two 
phenomena also begin in the negative area of the bifurcation parameter a1 
and then disappear in that range. Then, in the positive area of the bifurcation 
parameter a1, the two phenomena begin again with a big range of the 
variable x. 
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Conclusion 

  
In this paper, we analytically and numerically studied a mathematical 

biological system model given in Gohary and Alwasel (2009) for stability 
and bifurcation. We gave an investigation into the equilibrium points for the 
biological feasibility, stability, phase planes, and time trace for the behavior 
of the system near those points. The bifurcation analytical study determined 
(recognized) many cases where bifurcation held, which was verified using 
examples with fixed values for each case. Finally, we drew many bifurcation 
diagrams for those cases which showed us that the system has rich behaviors 
with bifurcation phenomena.
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