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Abstract  

 The aim of this paper is to apply Goal Programming in facility 

location. The feasibility project of a project idea on building an economic 

object is a defining moment in the decision making of the party that is 

investing on a certain project. Generally, the feasibility is done based on the 

global data extracted by the practical experience of building and functioning 

of similar existing object. However, it is understandable that the accuracy of 

the feasibility results is increased when different points of view are used in 

combination with exact methods of calculation. In this aspect, it is important 

to predict the income from the use of the object’s capacities. This leads to an 

intermediary problem which consists in predicting the most result oriented 

use of the object’s capacities. If the use of these capacities can be 

mathematically modeled through optimization models, then the basis of the 

data for evaluating the feasibility of the object becomes clearer. In this study 

was considered the possibility of using a mathematical model for the basin 

used by a yacht harbor. As a result, it is shown that the optimal use of a basin 

by a yacht harbor can be modeled as an objective function problem, which 

according to previously known methods can turn into a mathematical 

programming problem.  
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Introduction 

 Since tourism in Albania is a very important sector in the country’s 

economy, the central administration and the local ones are re-evaluating our 

specific resources and creating the legal opportunities for using them through 

the drafting and approval of master plans in a local or national level. This 
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sector of the economy is of special interest to different businessman and 

investors. In these circumstances the touristic capacities are vastly growing. 

Besides the existing structures, there are new state and private projects 

working on increasing the touristic capacities for the traditional activities or 

new ones. In these relatively rapid developments, it is noticeable that the 

importance of the projections and constructions of yacht harbors is 

increasing. Considering the size, structure and equipment that these harbors 

have, their cost could reach up to millions of Euros. In the time we are living 

in, when our experiences in building such touristic structures are not as 

developed, it is important that each aspect of the construction of these 

harbors is well studied, especially the technical, environmental and financial 

aspects. Another reason is the lack of the legal-administrative aspect of their 

functioning, which has allowed this touristic activity to remain not fully 

explored, although there is some public interest in their development. These 

reasons make the feasibility study of this project a very delicate situation 

which needs to be carefully treated by economists and technical planners.  

 

Problem statement. 

 After defining the physical dimensions and the necessary structures 

of such a project, its cost can be calculated based on the volume of works to 

be done and the prices of materials and equipment. This cost must be 

compared to the predicted income from the harbor. But, based on what 

factors must this income be calculated? This is the crucial topic that is 

treated in this study, where as an alternative is proposed the use of 

mathematical models as shown below.  

 It is clear that the income coming from such a touristic harbor is 

connected not only to marketing aspects, but also to the way that boats are 

organized in its basin. Different ways of organizing the yachts in the harbor 

are characterized by their structure and size, and from different levels of 

income. Practically, the organizational system of yachts and motorboats is 

based on experience and individual assumptions. Obviously, if one must find 

an optimal use for the basin of the harbor, then the use of mathematical 

models would lead to more exact assumptions of the income. In this line of 

thinking we assume that harbor projects, besides their structural aspect, 

should be accompanied with the optimal planning of the basin. With such a 

basis, the feasibility study would be much more reasoned.  

 The international experience in constructing and rationally using 

touristic harbors has led to the advanced idea of using the basin not only 

along the coast line but in its inner part as well. This idea is technically 

realized with floating dock (jetties) along which are put the supply lines for 

electricity, technological water and fuel for the needs of the yachts. 

Normally, the form of the basin depends on the terrain where the harbor is 
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constructed. But, having in mind how basins are formed by advancing in the 

sea and digging towards the ground, we take a triangular shape of the basin 

as a basis (fig. 1). However, the method we will explore here can be adapted 

to non rectangular shapes of the basin.  

 In this context we will name the touristic motorboats and sailing 

yachts that will be located in the touristic harbors with the common name of 

“boats”. For their docking we will use the term “connection”. The part of the 

water basin where a boat is connected to the other structures and furnishing 

will be named “boat-location”. 

 Renting a boat location in the harbor can be short term (a few days) 

or long term (some decades). Since in the biggest part of the year the boat 

remains connected to a chosen harbor from its owner, the owner probably 

would prefer to have its own boat location for a longer time period. In the 

model that we will construct we will consider this way of using the harbor, 

which will generate profit for each boat location.  

 Obviously boats have different lengths, starting from 7m up to 30m. 

There are also very luxurious yachts longer than 30m, which reside in 

harbors that fulfill the yacht’s and owners specific requirements. Based on 

the managerial practices of harbors, the long term rent for a boat location, 

which normally depends on its length, is classified as below:  

 

 The width of the boats is correlated to their length. For each of the 

groups Ki, i=1,...,6, the widths are known and reach known limits that we 

will appoint as gi, i=1,…,6.  The floating dock, in the configuration presented 

in figure 1, are parallel to each other and divided by an entrance canal in two 

groups. The length of the canal must be approximately 25m, which is enough 

for the boats to move freely. If the width of the water basin is small, then 

there can only be one group of floating dock and the entrance canal in this 

case will be from the side. The connection of the boats can be done through 

the two sides of the floating dock. Each yetty side is predicted large enough 

for certain types of boats (eventually, they can be connected to smaller 

boats).  

 The length Hij (or Hk if we only take one indicator into account) 

between the two floating dock  is calculated as the sum of the boat lengths of 

both classes Ki, Kj plus 1.5 times the length of the biggest boat. This water 

Class 

𝐾𝑖 

Its lengths 

𝑔𝑖 

Rent euro/boat 

𝑐𝑖 

K1 up to  h1=8m c1 

K2 from  h1=8m    up to   h2=12m c2 

K3 from h2=12m    up to  h3=15m c3 

K4 from h3=15m    up to  h4=20m c4 

K5 from h4=20m    up to  h5=25m c5 

K6 from h5=25m     up to  h6=30m c6 
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streak is large enough to allow the boat to approach its location and perform 

what is needed. Afterwards, to the above mentioned sum is added another 

2m, resulting in this formula:  

Hk=Hij=hi+hj+1.5max{hi,hj}+2 . 

 We will name this length the length of the water segment which 

serves to two classes Ki,Kj i,j=1,…,6. It is noticeable that the number of 

water segments is equal to the number of floating dock.  

 The length of the floating dock (fig. 1) is:  

d = metersb )25(
2
1 −                                   (1) 

 We assign ni the number of boats belonging to the classes Ki, 

i=1,…,6 which can be connected through a floating dock. This number is: 

ni = 

2162
6 =+









C

ig
d

                                   (2) 

 Water segments can be created for every combination of the boat 

classes Ki,Kj    i=1,…,6 and j=1,…,6. In our case their total number is  

n = 216C2

6 =+  

 The types of water segments that correspond to the different 

combinations (Ki,Kj) of the boat classes will be assigned as Tk, k=1,…,21 

counted according to this row of combinations: (K1,K1),(K1,K2),…,(K1,K6), 

(K2,K2),…,(K2,K6),…,(K6,K6). The respective lengths of these segments will 

be noted as h(Tk), k=1,…,21. The amounts of the boats belonging to each 

class which can be connected to a water segment Hk, as calculated in 

equation (2), are: 

ni(k) = 








ig
d

    and     nj(k) = 












jg
d

.                   (3) 

 These amounts are shown in table 1. In continuance of each row from 

that table are written the numbers c1,…,c6 which represent the prices for a 

boat location of each class Ki, i=1,…,6 that are considered as components of 

the price vectors cR6. 

 A layout of water segments in the harbor is defined by the numbers 

xk of the water segments of each type Tk, k=1,…,21 which are predicted to be 

established in the harbor. So, it is understandable that a layout is 

characterized by a vector xT=(x1,…,x21), with components xk, k=1,...,21. 

 As mentioned above, water basins of yacht harbors are layed partly 

towards the land and partly towards the sea. In special occasions the water 

basin can be layed only on one of these directions. However, one of the 

projection matters of the harbor is defining how much the basin will lay on 

each of these directions. So, we assign:  
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x22R   – the laying amount in the water basin 

x23R   – the laying amount in the land. 

  
 

Building the mathematical model 

 It would be of high interest that the harbor plan contains as many 

boat locations for each lenght type, but their amount depends on the size of 

the water basin and the spectrum of the classes.  

 The sum ∑ 𝐻𝑘𝑥𝑘
21
1 , shows the layout of the total length of all the 

water segments of the plan. In this case we assign 𝐴6𝑥21 the matrix which is 

defined by the elements of table 1.                            

 

The capacity constraint.  

 This condition expresses the physical limitation that the sum of all 

lengths Hk of the water segments of a plan should not be bigger than the 

double of the longitudinal extension a=x22+x23 of the water basin of the 

harbor (fig. 1). This condition is measured through this equation:  


=

21

1k

kkxH    2(x22+x23). 

 

The constraint of the boat classes 

 The managerial experiences have shown that a yacht harbor which is 

built to serve one or two boat classes of small lengths, does not achieve the 

expected success from their activity. It is understandable that the presence of 

larger boats in a harbor proves a more qualified service, technical and 
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administrative, and better accommodation conditions. So, indirectly, the 

presence of larger class boats is the best publicity for the quality of services 

that the harbor offers and at the same time leads to an increase in the number 

of boat location requests for all different classes. So, it is more reasonable to 

have a wider spectrum of boat classes.  

 It is known that the amount of boats in circulation decreases when the 

class’s index increases. That is the reason that the managers of yacht harbors 

start predicting minimal limitations of the number of boat locations for the 

higher classes since the projection time. The minimal limitations can also be 

classified in special classes.  

 For a length class of Ki, i =1,…,6, let’s assign gi(x) to the number of 

boats which belong to the class of a certain plan x. Considering what is 

mentioned above, the number is:  

gi(x) =(A.x)i ,  i=1,…,6                                              (4) 

 If the minimal boundary set for this class is Ni, then the boundary is 

expressed by the inequation:  

gi(x) =(A.x)i ≥ Ni                                                       (5) 

 To make the idea proposal a bit more concrete, we suppose that the 

minimal boundaries belong to the group-class (K5,K6) and for the special 

classes K4 and K3. We assign these boundaries as N5,6, N4 and N3 

respectively. In the cases when the limitations are set for groups of classes 

the choice of a model can lead to the non-inclusion of one of the classes. But, 

it is important that the classes spectrum is complete. So, the final plan must 

guarantee the presence of the larger classes which we suppose is Ks. such a 

request is realized by adding the limitation that the sum of the xk values for k 

where ns(k)≠0, must be ≥1. For the group class (K5,K6) this step belongs 

concretely to class K6. 

 

Goals 

 We assign f(x) to the sum of the total income from long term leasing 

of all the boat locations that the harbor plan contains. Keeping in mind the 

meaning of the matrix product A.x and the product of the vector c 

components, it is clear that the analytical expression of f(x) is:  

f(x)=cT(A.x).                                               (6) 

We assign:   

 a1 the distance from the coast, of the line where sea depth is 4.5m.  

 a2 the maximum boundary of the laying inside the ground of the water basin 

without natural, administrative or property obstacles.  

With these symbols we can formulate the further objectives:  

Ob.1. function f(x) should receive the highest value possible. 

Ob.2. advancing at sea x22 should be as close to a1 as possible. 
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Ob.3. inserting the water basin inside the ground x23 should not be bigger 

than a2. 

 

The mathematical model  

 We assign X to the vector with components (x1,…,x21,x22,x23) where 

xkϵN, k=1,...,21 and x22, x23ϵR. So, the vector X of the decision making 

variables is reached by adding the vector to the plan x, the two new 

components x22 and x23 in real values which represent the mass of 

advancement of the water basin in the sea and its infiltration into the water. 

We assign c1(X)=f(x), c2(X), c3(X) respectively the functions that represent 

objectives 1,2,3 depending on the decision making variables.  It is clear that 

c2(X)=x22, c3(X)=x23, while c1(X) is expressed as shown below by using the 

data from table 1. The objectives 2 and 3 are expressed respectively by the 

equation: c2(X)=x22=a1 and inequation c3(X) = x23 ≤ a2. 

 And now, the problem of rationally using the water basin of a yacht 

harbor takes this mathematical form:  

 Ob.1. Maximizing the function of the income (6) which when 

developed is:  

      c1(X)=2n1c1x1+(n1c1+n2c2)x2+(n1c1+n3c3)x3+(n1c1+n4c4)x4+(n1c1+n5c5)x5+ 

          +(n1c1+n6c6)x6 +2n2c2x7+(n2c2+n3c3)x8+(n2c2+n4c4)x9+(n2c2+n5c5)x10+ 

          +(n2c2+n6c6)x11+2n3c3x12++(n3c3+n4c4)x13+(n3c3+n5c5)x14+ 

           +(n3c3+n6c6)x15+2n4c4x16+(n4c4+n5c5)x17+(n4c4+n6c6)x18+ 

           +2n5c5x19+(n5c5+n6c6)x20+2n6c6x21 

 Ob.2. Achieving this equation:   

           x22=a1                                       

 Ob.3. Achieving this inequation:   

          x23  a2. 

 With the condition that all of the above conditions are made true 

through these inequations: 





















=

+++++

+++++

+++++

+++++

++++++

 +
=

0x0,x

1,...,21;k{0},Nx

Nxnxnxnx2nxnxn

Nxnxnx2nxnxnxn

1xxxxxx

Nx2n)xn(nx2nxn

xnxnxnxnxnxnxn

)x2(xxH

2322

k

31531431331238333

41841741641349444

21201815116

5,62162065195186

1751561451161056655

21

1k
2322kk

(7) 
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 This mathematical model is goal programming. The solutions of the 

problems for goal programming are found by returning them into 

mathematical problems (for example [3],[4],[5] etc). In our case, just as the 

functions c1(X), c2(X), c3(X) express the objectives of the problem, the 

inequations of the boundary system (7), are all linear. This means that the 

mathematical program also will be a linear programming.  

 In order for the goal programming to turn into a linear programming 

it is necessary that the objectives, which in the problem setting do not have 

any numerical target, are defined in the most argumented way possible. In 

the case of our problem, related to the first objectives which concerns the 

expected income from all the boat locations, there is no expressed numerical 

target. In this case those who study the project and calculate the cost of 

actualizing the harbor and the expected income ratio, also define a 

satisfactory amount which makes the project feasible. We assign this 

satisfactory amount with the symbol F. The depths a1 and a2 of the harbor 

insertion into the sea and land are the targets for the other two objective 

functions c2 (X) and c3(X).   

 We assign:  
++−+−+− Ry,y;y,y;y,y 332211

 

 the variables of the function values deviations c1(X), c2(X), c3(X) by 

the respective targets for each allowable solution X of the system (7).  

 With the insertion of the deviation variables it is possible to turn the 

problem into a linear programming through the two transformational 

operations:  

        (1) Construction of a summarizing objective function   

        (2) Insertion in the limitations system of a new equation for each 

objective. 

         For the problem in our case these operations are set out as below:  

(1) According to the weights method, as a summarizing objective function 

we use a linear function of the deviation variables, whose coefficients are 

defined based on the importance of each deviation. In this actual case we can 

consider as an important amount not passing the maximum limitation of how 

much we lay into the ground and water (a2) and we give a weight 5ω3 =+ to 

the variable of surpassing this limitation +

3y , while to the variable of non 

achieving this limitation −

3y  we can give the weight 0ω3 =
−  since not 

achieving that limitation is not important.  

 For a sandy coastline, as it is the biggest portion of our coast line, we 

can initially take as a value a1 the distance from the depth of 4.5m. Probably, 

this distance gives the harbor adequate dimensions. Not achieving a1does not 

cause an issue for the selected objectives. That is why we assign the weight 
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0ω2 =−
to the variable 

−

2y  which shows how much the a1 distance is not 

reached. Meanwhile, exceeding that distance a1 is important because the 

expenses of building the wave holding  become much higher compared to the 

scenario where the distance is not exceeded. For this reason the variable 
+

2y  

receives a positive weight (see below).  

 Finally, for the first objective of maximizing income, exceeding 

target F is not problematic. For this reason the variable
+

1y  is assigned a 

weight of 0ω1 =+
. It is also crucial that this target is achieved. Based on the 

actual circumstances we can compare the increase in expenses when target a1 

is exceeded to the decrease in income that not achieving this target brings. 

Based on such a comparison are compared the weights assigned to variables 
−

1y  and 2ω2 =+
 .  

 We assign X
~

to the vector of all variables (a total of 29) which we get 

by adding the six deviation variables +−+−+−

332211 y,,,,, yyyyy to the vector 

X. After evaluating the weights of the deviation variables, the summarized 

objective function which is closest to expressing the objective function target 

is:  

Φ( X
~

) = ++−++++−− ++=++ 321332211 5y2y3yyωyωyω  

       (2) The requests for achieving the accepted targets related to the 

objective functions c1(X), c2(X), c3(X, after inserting the deviation variables, 

are mathematically expressed through these equations: 

c1(X) 
+− −+ 11 yy                                = F 

x22                  +
+− − 22 yy                 = a1 

x23                                 + +− − 33 yy = a2 

 Finally, by adding the limitations (7) to the three last equations, the 

problem of optimal use of the water basin of a yacht harbor turns from an 

objective function program to a linear program with mixed variables:        

Min:  Φ( X
~

) = ++−++++−− ++=++ 321332211 5y2y3yyωyωyω  

 With the constraints that the system of limitations below is verified:       
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 The linear programing with mixed variables has relatively small 

proportions. Different programs and methods are used to solve such a 

problem (Hillier 2005). When the solution is not acceptable based on one or 

more selected targets, then without changing the model above we can 

analyse and re-define some targets or goals so that the problem has a 

solution. This practice can be repeated until we achieve the desired results.         

 For different reasons (nature, administrative limitations, property 

rights, etc), it can become difficult for the water basin to lay into the ground 

and pass a2. This means that the Objective 3 has been reached. Now we have 

a situation where the set of objectives are highly different based on their 

importance. In such cases, a hierarchy of priorities is defined. In the first 

priority are included the highly important objectives, whose reach can not be 

compromised because of the optimism for the other objectives. With such a 

criteria, in the set of the remaining objectives after removing those of first 

priority, are defined the second priority objectives and so on. This method of 

treating objectives based on priorities is called preemtive method in goal 

programming (Taha, 2007).  
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Conclusion 

 In the phase of the fisibility study of different project ideas, using 

mathematical models brings valuable help to increasing the accuracy of the 

study conclusions. As shown in this article, the mathematical models of goal 

programming, are very suitable for such studies as they, in their own nature, 

in one model include different evaluation chriteria of the project fisibility. 
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