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Abstract 
 Special Relativity presents before us several thought challenging 
paradoxes. The most famous one is the clock or twin paradox which arises 
from the well-known time dilation phenomenon. In this paper, we will give a 
brief but pedagogical treatment of this paradox. The crucial point is that the 
relativity of simultaneity, for events happening at different places, plays a 
fundamental role in understanding the apparent disagreement between the 
rest and the moving observers. Once this has been taken care of, the 
disagreement and the paradox would disappear.  
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Principles of Relativity 
 The Special Theory of Relativity is based on two postulates1, namely: 
the relativity of physics laws and the constancy2 of the speed of light 
(Einstein, 1905). The second postulate is particularly handy in deriving the 
theory results3.  Therefore, most, if not all textbooks on special relativity, use 
light signals and mirrors to derive the well-known formulas of time dilation 
and Length contraction (Kogut, 2001): 

 𝐸 = 𝛾𝐸′
𝐿 = 𝐿′/𝛾 (1) 

   where 𝐸 and 𝐿 are time and space intervals as measured in the rest inertial 
frame. Also, 𝐸′ and 𝐿′  are the corresponding measurements in the moving 
frame. 𝛾 is the usual factor 1/�1 − 𝑣2/𝑐2.  

                                                           
1 It appears, however, that one could also obtain the results of the special theory from the 
relativity principle alone (see references in (Lee & Kalotas, 1975; Levy-Leblond, 1976)). 
2 This means that the speed of light in vacuum has the same value in all directions and in all 
inertial reference frames. We leave here the question of the conventionality of any one-way 
speed aside (see reference (Capria, 2001)). 
3 The isotropy of space is also implicitly assumed. 
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  There is another very important result of special relativity which is 
the relativity of simultaneity of events happening at different locations. Based 
on the fact that it turns out that the relativity of simultaneity is the key to 
understanding most of the paradoxes appearing in special relativity, we gave 
a very brief review of it in the next section. At the same time, we also touch 
on the clocks synchronisation problem. 
 
Relativity of Simultaneity 
 Two similar clocks are said to be synchronized if they indicate the 
same time all the time. Therefore, such clocks, running at the same rate, must 
have started working simultaneously. We will see here that this is a relative 
notion indeed. The question is how to start two distant clocks at the same 
time. Let us assume that the clocks in question are at rest relative to the 
moving inertial frame 𝑆′ and are separated by a distance 𝑙′ (see Figure 1). A 
light signal is emitted from the middle point 𝑀. Thus, each clock begins 
ticking once reached by this signal whose speed in all directions is 𝑐. 
Through this way, the two clocks are set to work simultaneously with respect 
to the observers of 𝑆′. 

 
Figure 1. Synchronization of two clocks at rest in 𝑆′ 

 
 Let us examine this synchronisation procedure from the point of view 
of the observers of the frame 𝑆 in which the two clocks are moving along the 
𝑥-axis with speed 𝑣. This is illustrated in the figure below: 

 
Figure 2. The 𝑆′ clocks synchronization procedure as observed in 𝑆 
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 According to these observers, the light signal reaches the back clock 
𝐶𝑏 before it reaches the front clock 𝐶𝑓 (see Figure 2). This is so because 𝐶𝑓 is 
moving away from the light signal, while 𝐶𝑏 is moving towards it. Equally 
important, the speed of light is 𝑐 in both directions4. Thus, according to the 
observers of the frame 𝑆, the clock 𝐶𝑏 will start before  𝐶𝑓. As such, the two 
clocks do not start working simultaneously and are therefore not 
synchronized.  We see that what is simultaneously relative to one frame is not 
necessarily the case according to another one. Therefore, the notion of 
simultaneity is not absolute. 
 We can go a step further and calculate the amount of 
desynchronization according to the frame 𝑆. Let 𝑡𝑓 and 𝑡𝑏 be the times 
required by light signals to reach the forward and backward clocks, 
respectively.  According to the rest observers, the back clock starts ticking 
before the front clock, i.e.  𝑡𝑓 > 𝑡𝑏. Consequently, the back clock is ahead of 
the front clock by an interval of time  ∆𝑡 . Thus, this is calculated as follows: 

∆𝑡 = 𝑡𝑓 − 𝑡𝑏 

=
𝑙

2(𝑐 − 𝑣) −
𝑙

2(𝑐 + 𝑣) 

= 𝛾2
𝑣
𝑐2
𝑙 

Or, 
 ∆𝑡 = 𝛾2

𝑣
𝑐2
𝑙 (2) 

    Here, all quantities are measured in the rest frame5. Notice that there 
may be an issue of simultaneity only for events happening at different 
locations. We can write the content of the previous formula in term of 
quantities referring to the moving frame using the time dilation and length 
contraction expressions given by equation (1). Then, we obtain: 

 ∆𝑡′ =
𝑣
𝑐2
𝑙′ (3) 

    Furthermore, we should stress that this equation holds true only from 
the perspective of the frame 𝑆. This is because we have assumed that the 
clocks are in fact synchronized in 𝑆′. We may as well add that the rest 
observers would genuinely conclude that the moving observers are using 

                                                           
4 This is not true in Galileo relativity with ballistic light emission, where the speed of the 
signal in the forward direction is greater than its speed in the backward direction. The two 
moving clocks will still start working simultaneously and are therefore synchronized in this 
theory. 
5 It worth mentioning that the Lorentz Transformation could easily be deduced from 
equations (1-3). On the opposite side, given the Lorentz Transformation, these relations 
follow immediately (see for example Bohm, 2006). 
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unsynchronized clocks. Consequently, they must correct their measurement 
in line with the previous equations. They should in fact add the lost time due 
to the desynchronization (the back clock being ahead of the front clock). 
More on this is described in the next section. 
 
Clock or Twin Paradox 
 The source of this paradox6 is the time dilation formula as shown in 
Eq. (1). The observers at rest discovered that the moving observers’ clocks 
are running at a slower rate when compared to their own clocks7. By 
symmetry, the moving observers would arrive at the same conclusion. They 
rightly think that they are at rest and that it is the other observers who are 
moving. Therefore, their clocks must be running at a slow pace. Who is right 
and who is wrong? This seemingly paradox has been extensively discussed 
in the literature (Sartori. L, 1996; Carl & Stephen, 2001; Romer, 1959; 
Builder, 1957). However, let us inspect the situation more closely. 
 
Comparing One Moving Clock with the Two Rest Clocks 
 Let us first examine how the rest observers do their measurement. 
The crucial point is that they have to compare one and only one of the 
moving clocks, say 𝐶′, with two of their stationary synchronized clocks, say 
𝐶1 and 𝐶2 (see Figure 3).  

 
 Figure 3. Comparing one moving clock with the two rest clocks at locations 𝐴 and 𝐵 

                                                           
6 The twin paradox goes like this: A twin called 𝐴 travels in a round trip with a speed 𝑣 
close to that of light. When he comes back, he finds that because of the time dilation, twin 𝐵 
has aged more than he did. The paradox arises when we think of the problem as being 
symmetric: For the moving twin 𝐴, it is the rest twin 𝐵 who is travelling in the opposite 
direction with speed 𝑣. Consequently, it ought to age less, i.e. the paradox. 
7 This paradox concerns, of course, all types of time intervals, not only the interval between 
a clock’s ticks. 
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 We can assume without loss of generality that 𝐶′ is initially 
synchronized with 𝐶1 (Figure 3-a). In other words, the rest observer standing 
near 𝐶1 , observes that both 𝐶′ and 𝐶1 indicate the same time, say zero. Later, 
when the moving clock is compared with the second clock 𝐶2, the rest 
observer standing there discovers that it is lagging behind 𝐶2 (Figure 3-b). 
Thus, the relation between the two readings is given by the time dilation 
formula: 
 𝐸 = 𝛾𝐸′ (4) 
   where 𝐸 is the reading of 𝐶2 and 𝐸′ that of 𝐶′. 
 By following the same procedure, the moving observers would also 
arrive at a similar result: 
 𝐸′ = 𝛾𝐸 (5) 
    But, the moving observers, when watching those at rest doing their 
measurement, must raise the objection that these observers have in fact used 
two unsynchronised clocks, 𝐶1 and 𝐶2. Indeed, according to them8, clock 𝐶2 
is ahead of 𝐶1 by an interval given by equation (2).9 
 ∆𝑡′ = 𝛾2

𝑣
𝑐2
𝑙′ (6) 

   where 𝑙′ is the distance between the two clocks as measured by the moving 
observer. Using 𝑙′ = 𝑣𝐸′, the above equation can be written as: 

 ∆𝑡′ = 𝛾2
𝑣2

𝑐2
𝐸′ (7) 

    The moving observers then argue that those at rest should correct 
their result of Eq. (4). This is done by adding an amount of time ∆𝑡 related to 
their own ∆𝑡′ precisely by Eq. (5) 

∆𝑡 =
∆𝑡′
𝛾

=  𝛾
𝑣2

𝑐2
𝐸′ 

 In other words, the net result of the rest observers should have been 
𝐸 + 𝛾 𝑣2

𝑐2
𝐸′. Additionally, the comparison should be given as: 

𝐸 + 𝛾
𝑣2

𝑐2
𝐸′ = 𝛾𝐸′ 

By rearranging, we get: 

𝐸 = 𝛾𝐸′ − 𝛾
𝑣2

𝑐2
𝐸′ = 𝛾𝐸′ �1 −

𝑣2

𝑐2
� =

𝐸′

𝛾
 

                                                           
8 According to the moving observers, the two clock 𝐶1 and 𝐶2 are moving in the opposite 
direction with speed 𝑣. Equation (6) is exactly equation (2) of section 3, but with the role of 
observers reversed. 
9 We could of course use equation (3) instead, which must be combined with the length 
contraction formula. 
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Or,  

 𝐸 =
𝐸′

𝛾
 (8) 

    This is precisely the result obtained by the moving observers, see Eq. 
(5). Thus, the moving observers conclude that the reason why the rest 
observers get a different result is that they are using unsynchronized clocks. 
 Again, by symmetry, a similar reasoning using equations (2) or (3) 
would lead the rest observers into the same conclusion.  
 Therefore, because the two sets of observers will never agree on 
whose clocks were synchronised and whose were not, they cannot compare 
their measurements through this way. The way out of this puzzle consists of 
comparing one and only one rest clock with one and only one moving clock. 
No issue of simultaneity or synchronization would arise then.  For this 
purpose, the moving clock must make a round trip. Thus, we will discuss this 
point in the next section. 
 
Comparing One Rest Clock with One Moving Clock 
 Let us assume that the moving clock travels along the 𝑥-axis in the 
following way (see Figure 4): 
• From the same position as the clock at rest, the moving clock 
accelerates towards positive 𝑥 in a very brief time10 to reach a speed 𝑣 
comparable with that of light. We assume that the two clocks were initially 
synchronized. 
• The moving clock continues to move with that constant speed for a 
certain time. We can make this time long enough to ignore the acceleration 
time. 
• The moving clock decelerates abruptly, stops, and then accelerates in 
the opposite direction until it reaches the speed 𝑣 again. 
• The moving clock decelerates in a negligible time to stop beside the 
rest clock. 
 In order to calculate easily the time passed on each clock, let us also 
assume that at each unit of proper time, each clock sends a light signal to the 
other one (Bohm, 2006). Furthermore, we also represent the motion of the 
clocks and their signals in a spacetime of two dimensions (see Figure 4 and 
5). 

                                                           
10 This assumption allows us to ignore the parts of the trip where the moving clock 
accelerates. A. Logunov, (Lugonov, 2005, page 165), gives a general treatment including 
acceleration parts and without using General Relativity. 
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Figure 4. The world lines of the moving clock and its signals as seen in the rest frame. The 
signal are emitted at events 𝐿𝑖′ and received at events 𝐿𝑖. These lines are parallel to the light 

world line 𝑥 = −𝑐𝑡 
 
 We anticipate the result of this section. In this case, we state that both 
set of observers agree that, indeed, the moving clock measures a smaller time 
than the rest clock11. 
 Let us also recall the results of the well-known relativistic Doppler 
 Effect. A receding source emitting signals each interval 𝐸0′ of time as 
measured in its rest frame, appears to the rest observers as if it sends signals 
at a longer interval of time 𝐸0𝑟𝑟𝑐.  Therefore, this is given by: 

 𝐸0𝑟𝑟𝑐 = 𝐸0′�
1 + 𝑣

𝑐
1 − 𝑣

𝑐
 (9) 

    Similarly, when the source is approaching, one should have: 

 𝐸0
𝑎𝑎𝑎 = 𝐸0′�

1 − 𝑣
𝑐

1 + 𝑣
𝑐

 (10) 

    Notice that the difference between the last two formulas is a reversal 
of the sign just before the source speed. These formulas were also obtained 
in the context of k-calculus developed by Bondi (Bondi, 1980; Bohm, 2006).  
 Now, because the moving clock moves away and towards the rest 
clock with the same speed 𝑣 for equal periods, it emits the same number of 
pulses 𝑁/2 in each leg of the trip (𝑁 is the total number of pulses sent by the 
moving clock, see Figure 4). In other words, the number of signals emitted 

                                                           
11 Time is a path dependent quantity as H. Bondi put it in reference (Bondi, 1980). 
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during recession is equal to that emitted during the approach. Therefore, the 
rest clock should indicate a time for the whole trip which is given by: 

𝐸𝑡𝑟𝑖𝑎 =
𝑁
2
𝐸0𝑟𝑟𝑐 +

𝑁
2
𝐸0
𝑎𝑎𝑎 

Using equations (9) and (10), we find: 
 𝐸𝑡𝑟𝑖𝑎 = 𝛾𝑁𝐸0′ (11) 
    The rest clock, then, measures a time greater than the one measured 
by the moving observer, i.e. 𝑁𝐸0′,  by the usual factor 𝛾. Notice that we could 
have arrived at this result just by remembering the time dilation formula. We 
must have the right to do so because the rest observer is always at rest in the 
same inertial frame. 
 Let us now calculate the time of the trip as measured by the moving 
clock. We see from Figure 5 that the number of signals 𝑁1 received during 
recession, i.e. during the outbound leg, is smaller than the number of signals 
𝑁2 received during the approach, i.e. during the inbound leg of the trip. We 
still have of course 𝑁1 + 𝑁2 = 𝑁 , which is the total number of signals.  

 
Figure 5. World lines of the signals emitted by the rest clock and received by the moving 

one. These lines are parallel to the light world line 𝑥 = 𝑐𝑡 
  
 Therefore, the moving clock records the following time: 

𝐸𝑡𝑟𝑖𝑎′ = 𝑁1𝐸0′
𝑟𝑟𝑐 + 𝑁2𝐸0′

𝑎𝑎𝑎 

= 𝑁1𝐸0�
1 + 𝑣

𝑐
1 − 𝑣

𝑐
+ 𝑁2𝐸0�

1 − 𝑣
𝑐

1 + 𝑣
𝑐
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=
𝑁𝐸0

�1 − 𝑣2
𝑐2

�1 −
𝑣
𝑐

(
𝑁2 − 𝑁1

𝑁
)� 

where 𝑁 = 𝑁1 + 𝑁2. Also, we show in the appendix that:12 

 𝑁2 − 𝑁1
𝑁

=
𝑣
𝑐

 (12) 

    Putting this result in the previous calculation, we get: 

𝐸𝑡𝑟𝑖𝑎′ =
𝑁𝐸0

�1 − 𝑣2
𝑐2

�1 −
𝑣2

𝑐2�
 

Or simply, 

 𝐸𝑡𝑟𝑖𝑎′ =
𝑁𝐸0
𝛾

 (13) 

    Therefore, the moving observers agree with the rest ones. The 
moving clock does indeed measure a time smaller than the ones measured by 
the rest clock, i.e. 𝑁𝐸0, with exactly the expected factor.  
 It is important to realize that, because the moving clock accelerates in 
the turnaround of its journey, the situation is not symmetric anymore between 
the two clocks as was the case in the previous section. 
 Furthermore, we discuss the reason travelling observers do measure a 
smaller time than the rest ones13. From the point of view of the observers at 
rest in 𝑆′, that is the moving observers, it is the observers at rest in 𝑆 who are 
moving with speed 𝑣 in the opposite direction. The later observers’ clock 
should therefore run slowly according to the usual time dilation formula, 
𝐸′ = 𝛾 𝐸. If only time dilation were involved in the clock paradox, the 
travelling observers would expect that the rest clocks record a smaller time 
than what their own clocks indicate. This must be true, of course, for both 
the outbound and inbound legs. They would expect therefore that when they 
meet up with the rest observers at the end of the journey, the total times of 
the trip indicated by their respective clocks should be related as follow: 
 𝐸𝑡𝑟𝑖𝑎 = 𝐸𝑡𝑟𝑖𝑎′ /𝛾  (14) 
    However, this is in contradiction with equation (13) obtained through 
a Doppler analysis. How can we reconcile between the arguments going 
along with these two contradictory results? Here, once again, we have 
recourse to the relativity of simultaneity. The time dilation phenomenon is 
not the whole story. The point is that when the travelling observers do the 

                                                           
12 I did not succeed to find this formula in the literature available to me. 
13 For a concrete example with numbers, see L. Sartori, chapter 6. Here we give a general 
treatment. 
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turnaround at point 𝑃 (See Figure 6), they jump from an inertial frame to 
another. They jump from the inertial frame 𝑆′, which is moving away from 
the rest observers, to another inertial frame 𝑆′′ moving towards the rest 
observers. This has an important effect such that the line of simultaneous 
events changes. Just before the turnaround, the line of simultaneous events in 
the frame 𝑆′ is 𝑀1𝑃. This line is parallel to the 𝑥′-axis which makes an angle 
𝜃 with the 𝑥-axis. This is also the same angle between the moving clock 
world line 𝑂𝑃, which represents the 𝑡′-axis in 𝑆′, and the 𝑡-axis. This is so 
because the light signal world line, 𝑥 = 𝑐𝑡 or 𝑥′ = 𝑐𝑡′, is always a bisector in 
all the inertial frames14. Then, just after the turnaround, the line of 
simultaneous events, in 𝑆′′, becomes 𝑀2𝑃. Consequently, the moving 
observers take account only for the time passed between 𝑂 and 𝑀1 in the 
outbound leg and between 𝑀2 and 𝐺 in the inbound leg. The time 𝐸𝑀 passing 
between the events 𝑀1 and 𝑀2 in the rest frame is unaccounted for by the 
travelling observers.  

 
Figure 6. Change of simultaneity line as the turnaround point 

 
 In order to correct this miscount, we added the time 𝐸𝑀 to the result 
obtained in equation (14). 
 𝐸𝑡𝑟𝑖𝑎 = 𝐸𝑡𝑟𝑖𝑎′ /𝛾 + 𝐸𝑀 (15) 
   We will show in the appendix that:  

 𝐸𝑀 =
𝑣2

𝑐2
𝐸𝑡𝑟𝑖𝑎 (16) 

   
                                                           

14 Notice that the events simultaneous with the event 𝑂 in the rest frame 𝑆 is the 𝑥-axis 
itself. The Line 𝑀𝑃 represents the events simultaneous with 𝑀 in this same frame. 
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Equation (15) then becomes: 

𝐸𝑡𝑟𝑖𝑎 = 𝐸𝑡𝑟𝑖𝑎′ /𝛾 +
𝑣2

𝑐2
𝐸𝑡𝑟𝑖𝑎 

Or, 
 𝐸𝑡𝑟𝑖𝑎′ = 𝐸𝑡𝑟𝑖𝑎/𝛾 (17) 
   which does now agree with equation (13). 
 
Conclusion 
 In this paper, a short description of the twin or clock paradox was 
given. We showed that the clock travelling in a round trip runs effectively 
slower than the rest clock. The twin accompanying these clocks agrees on 
their measurements and no paradox arises. On the other hand, there was no 
attempt to explain how and why the moving clock does run slow. Perhaps, 
the best explanation is that we truly live in a spacetime of four dimensions. 
Therefore, the proper time is route or path dependent (Petkov, 2009). 
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Appendix 
 We would now like to prove equation (12). It is clear from Figure 7 
that 𝑁1 is proportional to the area 𝐴1 (area under the triangle 𝑂𝐿𝑃).15 Also, 
𝑁2 is proportional to 𝐴2 (area under the triangle 𝐿𝐺𝑃). Therefore, 

 
𝑁2 − 𝑁1
𝑁2 + 𝑁1

=
𝐴2 − 𝐴1
𝐴2 + 𝐴1

 (18) 

   

                                                           
15 The line 𝐿𝑃, being a light signal world line, is parallel to the bisector 𝑥 = 𝑐𝑡. It 
corresponds to the signal received by the moving clock just before changing the direction of 
its motion. 
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Figure 7. calculating the ratio 𝑁2−𝑁1

𝑁2+𝑁1
= 𝐴2−𝐴1

𝐴2+𝐴1
. 

 
 Notice also that 𝐴2 + 𝐴1 is the area under the isosceles triangle 𝑂𝐺𝑃. 
Therefore, it is given by: 

𝐴2 + 𝐴1 =
𝑂𝐺 × 𝑀𝑃

2
 

 Similarly, 𝐴2 − 𝐴1 is the area under the isosceles triangle 𝐿𝐸𝑃. This 
is because 𝐴1 is also equal to the area under the triangle 𝐸𝐺𝑃. Therefore, it is 
given by: 

𝐴2 − 𝐴1 =
𝐿𝐸 × 𝑀𝑃

2
 

 Thus, by using the two previous equations, we have: 

 
𝐴2 − 𝐴1
𝐴2 + 𝐴1

=
𝐿𝐸
𝑂𝐺

 (19) 

   On another side, 

tan(45𝑜) =
𝐿𝑀
𝑀𝑃

=
𝐿𝐸

2𝑀𝑃
= 1 

Or, 
 𝐿𝐸 = 2𝑀𝑃 (20) 
   Combining equations (19) and (20), we obtain: 

 
𝑁2 − 𝑁1
𝑁2 + 𝑁1

=
2𝑀𝑃
𝑂𝐺

 (21) 

   We also have, 
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tan(𝜃) =
𝑀𝑃
𝑂𝑀

=
2𝑀𝑃
𝑂𝐺

=
𝑁2 − 𝑁1
𝑁2 + 𝑁1

 

where we used Eq. (21). But tan(𝜃) = 𝑣
𝑐
  (This is the slope of the moving 

clock world line. We have 𝑥 = 𝑣𝑡 = 𝑣
𝑐
𝑐𝑡. In addition, we notice that we 

plotted 𝑐𝑡 on the time axis and not just 𝑡). Therefore, 

 
𝑁2 − 𝑁1
𝑁2 + 𝑁1

=
𝑣
𝑐

 (22) 

   which finalizes the proof of Eq. (12). 
Furthermore, we prove equation (16). We see from Figure 6 that  𝐸𝑀 =
𝑀1𝑀2/𝑐 and that 

𝑀1𝑀 =  𝑀𝑃 tan(𝜃) 
with tan(𝜃) = 𝑣/𝑐 as it was just above. 𝑀𝑃 represents half the distance as 
measured in the rest frame, which is crossed by the travelling clock. Thus, 
ignoring the acceleration periods, we have 
𝑀𝑃 = 1

2
𝑣 𝐸𝑡𝑟𝑖𝑎 = 1

2
𝑣
𝑐

 𝑐𝐸𝑡𝑟𝑖𝑎, 
where 𝐸𝑡𝑟𝑖𝑎 is the duration of the whole journey as timed in the rest frame. 
Subsequently, we obtain the following system of equations: 

�
𝑀1𝑀 =

1
2

 𝑀1𝑀2 =
1
2

 𝑐𝐸𝑀                 

𝑀1𝑀 = 𝑀𝑃 tan(𝜃) =
1
2
�
𝑣
𝑐
�
2
𝑐𝐸𝑡𝑟𝑖𝑎

 

 From the above, we deduce that: 

𝐸𝑀 =
𝑣2

𝑐2
𝐸𝑡𝑟𝑖𝑎 

which is regarded as equation (16).  
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