Optimized Domain Decomposition Method for Non
Linear Reaction Advection Diffusion Equation

M.R.Amattouch, PhD
N.Nagid, PhD
H.Belhadj, Prof.

University of Abdelmalek Essaadi, Faculty Of Sciences And Techniques,
Department Of Mathematics, Tangier, Morocco

doi: 10.19044/esj.2016.v12n27p63 URL:http://dx.doi.org/10.19044/esj.2016.v12n27p63

Abstract

This work is devoted to an optimized domain decomposition method
applied to a non linear reaction advection diffusion equation. The proposed
method is based on the idea of the optimized of two order (O0O2) method
developed this last two decades. We first treat a modified fixed point
technique to linearize the problem and then we generalize the 002 method
and modify it to obtain a new more optimized rate of convergence of the
Schwarz algorithm. To compute the new rate of convergence we have used
Fourier analysis. For the numerical computation we minimize this rate of
convergence using a global optimization algorithm. Several test-cases of
analytical problems illustrate this approach and show the efficiency of the
proposed new method.

Keywords: Non linear reaction advection diffusion equation, Modified fixed
point method, Domain decomposition method, Optimized interface
conditions, Finite volume discretization

Introduction

The aim goal of this paper is to propose an optimized domain
decomposition method (DDM) to solve a non linear reaction advection
diffusion equation on a bounded domain such that:

ou ou
F(u)+cu +aa—+b——vAu =f onQ (1)
X
u=g on oQ2
This kind of equations has been treated using domain decomposition

methods by many autors these last two decades [1,2,4,5]. In the proposed
work in [4,5], the autors have developed a new method based on DDM for
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witch they proposed an approximated convergence rate corresponding to an
optimized OO2 interface conditions. The difficulty of this method is that the
rate of convergence is not given explicitly, and its approximation is not given
precisely.

In the article [3] we have developed more faster algorithm of
Newton-Krylov-Schwarz applied to non stationary problem. Several authors
have used many other ideas. For example in [8,9] we propose Newton or
quasi-Newton type methods to solve the non linear system such that
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

These kinds of Newton methods can be used in the context of DDM,
but numerically the convergence takes a long time for many non-linearity
test-cases.

In the present work we suggest a new approach based on the fixed
point theorem to solve the nonlinear partial differential equation of reaction-
advection-diffusion that we meet most time in the fluid dynamics and
environmental problems.

We propose to use the Schauder fixed point theorem to linearize the
two sub-problems. We have calculated explicitly the rate of the optimized
two order DDM using this technique and Fourier analysis. It is easy to
optimize the rate of convergence using global optimization functions that are
implemented in different softwares (Scilab, Matlab,..).

In this article we first present the method based on the fixed point
theorem for which we prove the convergence and we show some numerical
results obtained using the Scilab software.

In the second part of this work, we present the decomposition domain
optimized order two suggested in [1,2] and we develop the technique for
calculating explicitly the rate of convergence.

Several numerical examples show the efficiency of the proposed
method.

The Modified Fixed point method
In this section we treat the stationary nonlinear reaction advection
diffusion problem:

F(u)+cu+aa—u+ba—u—vAu =f onQ (y
OX

u=0 on 0Q
For a given one initial function Ug, We construct a sequence of

functions Un such that:
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Cuml 4 aaun+1 + b aun+1 _ VAUn+1 = f — F(un) on O (3)

OX
u, =0 on oQ
In the following we show the convergence of u,, to the solution of
problem (2).
Let\V = H;(Q). Consider the application
o N >V
VU

such that u is the solution of the variational formulation:
fecuw + [avuw+ [VuVw = [(f — F(v))w vweV ()
where
_ (a
a=

b

Lemma 1.1 if the assumptions:
- du>0; c—ldiva’z O;and L=< U
2

- a,b,c, and x are bounded functions.
are verified, we assume that the variational formulation (4) has an unique
solution u in V

Proof : Consider the bilinear form a:

a(u,w) = [cuw+ [aVuw+ [ uVuvw
Q Q Q
by the Holder and the Poincarré Inequalities a is continuous:

a(u,w) < (supc)lu] [wi + supla| | Vulwi+sup u[Vul[vui

poincarre poincarre

< (supiC] +SUp[a]Cur. + Ca SUPL) vul[vw

a is coercive:
faVuw = —juaVw - [diva uw+ [fi d uw
Q Q Q oQ

= —fuavVw —[diva uw
Q Q
Thus,
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a(u,u) =[cuu+ ;fa'Vuu +;jéVuu +[ #Vuvu

[cuu —;jua’Vu —;jdiva’uu +;ja’Vuu +[ #Vuvu

1. :
:i(c—zdlva)u +Julvu

> uu2

The Lax Milgram theorem involves that there exists one solution of
(2) named o(v)
we have by substraction:

a(pu) —p(v).w) =[(F(u)-FW)w vweV
Theorem 1.1 Suppose that:

- E|U>O;C—%diV§ZOand,u>-U

- Fis K-lipshitzian.

- ¢,a,b and x are bounded functions and E <=1

MU
Then the sequence u,,q=¢(u,) converges to the unique solution of the

nonlinear problem (2)

Proof. The application ¢ bellow is well defined by lemma 1.1

We take w=@(u)—¢(v) used in the coercivity of a(.,.) in the proof of the
lemma 1.1 then

a(pu) — (V). p(U) = e(V)) = [ (F () = F(M) (o) — 9(v))
= v]jp(u) — ()

F is K-lipshitzian, then we have:
) — )| < K|u —V[|eu) — p()|

K 1 then ¢ is a contraction, and so, applying the Shauder fixed point
15
theorem to the application ¢ we show that the equation ¢(u)=u) have one

solution and the sequence u,,q=¢(u,) converges to this solution which is
the solution of problem (3).
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In the proof of the theorem we saw that:

Vio(U)-p(W)I°<Klu-vllo(u)-o(v)
The convergence of the the fixed point algorithm is faster when K is
increasingly small, so for obtaining a small coefficient K we propose to

modify the problem (3) as follows:
(C - §)Un+1 + évunﬂ - /LlAun-d = f - F(un) - fun On Q
u,=0 onoQ

The parameter & is added to the system (3) to construct a new
sequence with a smaller Lipshitzian K coefficient.
Theorem 1.2 Suppose that:

(5)

: 5|U>0:c—;div320a”dﬂ>0

c,a,b and u are bounded
- FeC?R)
SO)=F'(IxI)

Then the sequence u, of problem (3) converges to the solution of the

nonlinear problem (1).
Proof. We assume that there exists a ¢<1 such that
‘F(z) —FY)—-F'(xX)(z— y)‘ <éelz—y| Vy,zelx—e, x+eg[ (FeC?*(R))

Consider V ={u e H}(Q) /\u _‘XHw < g} and et
oV >V

VU

such that u is the solution of the variational formulation:
[+ F'(X)uw+ [avuw+]uVuvw = [(f + F'(x])v — F(v))w Vw e H; ()

As we have done for the proof of Theorem 1.1, we have: ¢ is well
defined because of theorem 1.3 and we show that:

a(p(u) ~p(v), p(u) — (V) = ] (F (u) = F (v) = F' (X)(u - V))(g(u) ~ (V)

> vlp(u) - (V)|
Thus

Vio(U)—o(v)P<elu-V]p(u)-o(v)|
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and then ¢ is continuous, so the Schauder theorem involves that the sequence
u, of problem (3) converges to the unique solution of the weak formulation

of the nonlinear problem (1) O
In the next theorem we generalize the lemma (1.1) for all functions a,
b and c for the linear problem:

cu+avu—pAu=f onQ (7
u=0 on oQ

Notice that the first condition of lemma (1.1) is omitted in the next
theorem.
Theorem 0.3 Suppose that:
- >0; ux)>v YXeQ
- ¢,a,b and u are given arbitrary bounded functions.
Then the problem (4) has an unique solution in H(Q)-

Proof. We can choose function Cjy and two parameters ¢ and p such that:

S S ¥
su+u, 2

'C0+g(c—;diva)20
_5/J+yo>c 50
2 0
So consider:
oV >V

VU

such that u is the solution of the variational problem:
[(C, + )uw+ [eaVuw + [ (i + g1, )VuVw = [ (T +C))vw +

e+ [, VVVW YW eV

(8)
As we have done for the proof of Theorem 1.1 we have: ¢ is well
defined because

c+C0—%div320

and we show that:
a(p(u) —(v), p(u) —p(v)) = I (Co(u=Vv)(p(u) —p(\V)) +...

. -ﬂoiv(u —V)V(p(u) - (V) = (0 + 1) p(u) - p(v)|
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Thus

(evwo)l(p(U)—cp(V)IZS(C0+uo)IU—VIIcp(U)—tp(V)I
and then ¢ is continuous, so by the Schauder theorem ¢ has one fixed point
which is the solution of problem (4) o

Remark 1 To accelerate the fixed point of problem (1) we propose the
sequence u,, such that:

n
(c=&u,,+avu,,—pAu , =f-F(u)-4, onQg)
{ u,=0 onoQ
we take for example
¢=F(p(x))
s FU)-FO-

u

n

Remark 2 With the same way we can apply this concept of fixed point to the
general following problem:

aa‘: +F(u) + AQU)VU — g(U)Au  on Qx[0,T]

3 u=g onoQx[0,T]
ut=0)=h

(10)

where A and B and x are non linear functions. Indeed:
For a given initial function U, we construct iteratively a sequence function
u_ as follows:

ag;ﬂ + Cun+1 + A(un)vunﬂ - ﬂ(un)AunH = f — F(un) OnQX [O,T]
un+1 = g on aQX[O,T]
un+l(t = 0) = h

(11)

Domain decomposition with optimized interface of two order(DDM
002):

The use of finite volumes , finite differences or finite elements
solvers on high order meshes requires a high cost of computation.
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Domain decomposition methods can reduce this cost by splitting
initial problem into two or more sub-problems with smaller dimensions.
Many authors have studied domain decomposition methods these last
decades [10, 11]. Among these methods we consider in this work the method
called second order optimized method OO2. This method was developed by
different authors [1,2]. The main idea of the OO2 technique is described
briefly as follows:

We split the domain Q in two sub-domains €; and Q5 with an

interface I" (see figure 1)

e h n \ u’_;‘l =

then we built two sequences ulp and U 2" respectively solutions of two

sub-problems as described bellow:
we choose two initials functions ulO defined on Qq and uf defined on Q,

then we consider the two problems:

-

Lu)="f onQ,
u™“=g onoQnNQ, (12)
B, (u)=B(u)) onTl
And
Lu*)=1f onQ,
T Wr=g onoQnNQ, (13)
B,(u")=B,(u’) onl
Where
L(u)=cu+avu— uAu (14)

Bu) =Y _cu+c,M_c o
on ot or’ (15)

B —-2-Cc,-Yu+c, ¢ !
on u or ot
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nand t are the normal and the tangent on Q4

Because of the Fourier analysis we show that the rate of convergence

in the fourier way is (see [6] for proof)
2

A (k)-C, +ikC, +Ck’ (16)

p(C,C..C.K) = _
A(k)+—-C, +ikC,+Ck’
y7i

where

J(K) =

a+./a’ +4cu —Aikub + 4k*

2p
In the following we resume the demonstration in the case of which
the interface I' is the line x=0, then the normal and the tangent vector are
respectively n="i and t=j
we have by substraction:
L(u’®—-u)=0 and LU —u)=0

Bl (u1p+2 - U) = Bl (uzp+l - U); and Bz (uzp{L - U) = Bz (ulp - U)

u is the exact solution of the problem . if oP*2 is the fourier transform of
u’”* —u, we have

00" bk — 10
OX OX

k is the fourier frequency. If we take a solution in the form of (0, k)e™
we have
c+ar—ibk—pa2-+uk2=0
it’s an equation of two order which have two solution

+ 2 /M 2,2
2 (K) = a+./a’+4cu —4ikub + 4k u

21

Since [imew®?(x, k) =0 We take @ (X, k) = @"*(0,k)e"” (remark that

A =0 and 4 <0)
by the same way if oP*1 is the fourier transform of U2p+1 — U, we have
" (x,k) = ©""(0,k)e*"

The conditions

co®™? +a +Kk’w"? =0

2
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Bl(a)p+2(0,k))= Bl(a)p+1(0,k)) and Bz(a)p+l(0,k))= Bz(a)p(o,k))

implies
2 _ 1
(A (k) - C, +ikC, + C3k2)a)p+ (0.K) = (7 (K) - C, +ikC, + C31<2)a)I0+ (0,k)

(4 (k)-Cy+— +|kC2+C3k Yo P (0, K)=(4T (k)- ~Cp+o +|kC2+C3k 2yoP0k)

Thus the rate of convergence is
+ a . 2
(C1,C,Ca K) oP*2(0k) 1 (K)-CprikCyCgk® # ()7CaT rikC G
,0 15 21 31 = = ] X
0P (0.k) /1+(k)—C1+|kC2+C3k2 /1_(k)—C1+E+ikC2+C3k2

Y7,

Since 2* + 4 = E we have expression (11) The next theorem

y7j
show the convergence of OO2 method as developed in [6]
Theorem 2.4 Suppose that c>0 and sign(b)=sign(C,) and C3>0 then,

max |(C,,C,,C,,k)| <1
[KI<T
Proof. see [6]
Remark 3 In order to optimize the method we need to optimize the rate of
convergence so we look for:

min max [o(C,,C,,C, k)| <1
C,.C,.Cy ‘k‘%

For optimizing this rate we have implemented the global optimization
method [7]. Notice that this last problem have at least two optimums.
Remark 4 The O02 method converges if ¢>0. It can be generalized to a
problem with coefficients a and b are variables. Nevertheless, if ¢ is negative
the method is not convergent in the most cases of this kind of equations.

In the next theorem we prove the convergence this problem when c<O0:
Theorem 0.5 Let c<0 then the problem (12) and (13) converge when
applying the OO2 method

Proof. If c<0 then 1—c>0, so applying the following fixed point

dl-cu ,+avu , —puAu  =f —F(u )—(2c-1u
=g o0noQ
(17)
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the 002 algorithm converges because 1—¢>0.0
We take the generalized artificial coefficients:

2 2
oy OU ou . 07U ou ou(0,y-a) . o°u(y-a)
B '(u)=—-Cu+Cy —-Co——+—-Cqu(0,y-a)+C -C
l() on 1 251’ 3572 on 1( Y ) 2 or 3 5‘[2
2 2
au a ou . o0°u a ou(0,y+a o-u(y+a
By (1) = (Cp-AusCy ey U (e Bu(0,yra)ec, MO ¢ TUYFR)
an U or .2 U or 072

The Fourier transform of the the rate of convergence is calculated
using:
F(f(y—a))=expikaF(f)

The Coupled OO2 and Fixed point leads to the next subproblems:

(L(u”")=f -F@u)—-&’ onQ,

¥ u™ =g onoQMQ, (18)
| B, (u™)=B(,) on T

and

(L(uP)=f -F@Uu’)-&’ onQ,

; u*=g onaQNQ, (19)
| B,W")=B,) on T

where:

L(u)=(c—-&u+avu— uAu (20

Remark 5 For the method consisting in the resolution of the partial
differential equation (1.1) by the finite volumes method, or finite differences
method and solving the obtained non linear system using Newton, the
convergence rate depends on the solution of partial differential equation. So
it’s impossible to compute this rate of convergence. One idea is to suggest a
non linear decomposition [4,5] by eliminating the terms that we don’t know
in the convergence rate. Unfortunately, this method is often inaccurate.

I11. Finite volume discretization:

To apply the finite volumes method, we choose a squared control
volume C (figure (2))
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Figure 2: Control volume
and we integer partial differential equation on C:

icu+iag—i+£b%—iyAu:£f

We approximate each member of this equation(using classical Finite
volume method):

M-
<
=3
=

u cC .
fcu~——
C

if the control volume C is on the interface T'(figure (3)), we integer
the partial differential equation on both CUQ, and CUQ,,.
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Figure 3: Control volume which include a part of the interface
So we have at iteration p+1 of the method (7) and (8):
p+1 P __
JLW™ )+ L) =]f +]f
C C, C, C,
where,

jL(u):jcu+jaVu—iju

the terms I cu + I avu are calculated as presented before. and we have:

au ou
AU = —+
6( H C.J/F H ani j Hon 5n
Replacing in (12):
P oud
p+1 <o P+l p - 2
cu + [ avu + [ cus + aVu —& +
le 1 Cfl 1 CJZ 2 Cjz cJ;rlu an I,U anz
ou™ au“
+ L 2 f+[f
l u( P ) I I

1

because B, (U"") = B, (U,) we have:
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ou’™ ou’ 0 0’ .
———+=(C,-C,—+C, )" -u;)
on, on, or, ot
so we replace this equality in the last equation to complete the
interface condition and to ensure the convergence of the finite volumes
method.

Numerical simulation
Numerically, we have implemented the finite volumes method to
approach the sub-problems obtained after applying the fixed point algorithm.

We obtain a good accuracy, the error is in the order of 10~ forward
the third iteration on some usual test-functions .We take for F respectively
the expressions

F(u)=uP
F(u)=e!

a
F(u) b+u
F(u)=log(1—u)

The following results show the error between the approximate
solution using the modified fixed point method and the exact solution

uexact=xy(1-x)(1-y) of the problem (1). EFror = HU —u

exact ||| 2

0

10
10°
g
s
10—10
-15
197 2 4 8 10
iterations
Figure 4: The error: c=p=1, a=b=0 h=0.025; F(u)=u*u
1’
10°
e
5
107}
15
g 2 4 8 8 10

iterations

Figure 5: The error: c=2, u=0.1, a=-1, b=0, h=0.001 and F(u)=exp(u)
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error
)

4] 2 4 6 8 10
iterations

Figure 6: The error: ¢c=2, u=0.1, a=-2, b=1, h=0.001 and F(u)=a/(b+u)

error

0 2 4 6 8 10
iterations
Figure 7: c=-1, u=0.5, a=2, b=-1.5, h=0.001 and F(u)=log(1-u)
h is the mesh grid.
Now, we show the results of combining modified fixed point and

002 algorithm.

1" 10°

10° 10
5 5
5 5

TU_“U r 1D'm L

107 15

o] 5 10 15 20 10 - . ;
. 0 5 10 145 20
Iterations terations
Figure 8: casel Figure 9: case2
10° 10°
—Robin —Robhin
—002 —o002

107 10°
S S
o T

107" 10"

15 -15
1075 5 10 15 20 1075 5 10 15 20
iterations iterations
Figure 10: case3 Figure 11: case4
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The figures 8,9,10,11 showing the L2 error between the combining
modified fixed point solution and the OO2 algorithm and the exact solution.

Test casel: ¢=0.1, p=1, a=b=-2, h=0.025, F(u)=log(u) and
Uayact=XY(1=X)(1-Y).

Test case2: c¢=2, p=0.1, a=-1, b=0, h=0.001, F(u):u2 and
uexact=exp(xy(1-x)(1-y))—1.

Test case3: c¢=-2, pu=0.1 , a=-2, b=1, h=0,001, F(u):u3 and
Uayact=XP(xy(1-X)(1-y))-1.

Test case4: c=-1, p=0.5 , a=sin(xy), b=—cos(xy), h=0,001,
F(u)=exp(u)—1 and Ugy 4 =XY(1-X)(1-Y).

h is the mesh grid

Here are some examples of results of the proposed algorithm
corresponding to some tests functions

0 o

Figure 12: casel. Figure 13: case2.

Figure 14: case3 Figure 15: case4
casel:u=xy(1-x)(1-y)
case2:u=exp(xy(1-x)(1-y)-1).
case3:u=In(1-xy(1-x)(1-y)).
cased:u=exp(x*y)-xy

Conclusion
In this work we have developed an optimized domain decomposition
algorithm applied to a non linear PDE. We firstly have proposed a proof of
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the convergence of the fixed point technique applied to the non linear
equation. We have proposed a new approach for computing the convergence
rate using the Fourier analysis and global optimization. Secondly we have
presented several test-cases to show the efficiency of this approach. The
fundamental result is that we obtained a well optimized rate of convergence
of the proposed algorithm in comparison with global calculation using
classical solvers. As perspective of the present work, we can study the
following ideas:

- Generalize the method to non linear and non stationary equation

- Generalize the approach to the nonlinear diffusion equation.

- Apply the method to real problems in fluid dynamics,
environmental sciences or the image processing.
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