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Abstract 
 This work is devoted to an optimized domain decomposition method 

applied to a non linear reaction advection diffusion equation. The proposed 

method is based on the idea of the optimized of two order (OO2) method 

developed this last two decades. We first treat a modified fixed point 

technique to linearize the problem and then we generalize the OO2 method 

and modify it to obtain a new more optimized rate of convergence of the 

Schwarz algorithm. To compute the new rate of convergence we have used 

Fourier analysis. For the numerical computation we minimize this rate of 

convergence using a global optimization algorithm. Several test-cases of 

analytical problems illustrate this approach and show the efficiency of the 

proposed new method. 
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Introduction 

 The aim goal of this paper is to propose an optimized domain 

decomposition method (DDM) to solve a non linear reaction advection 

diffusion equation on a bounded domain such that: 
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 This kind of equations has been treated using domain decomposition 

methods by many autors these last two decades [1,2,4,5]. In the proposed 

work in [4,5], the autors have developed a new method based on DDM for 
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witch they proposed an approximated convergence rate corresponding to an 

optimized OO2 interface conditions. The difficulty of this method is that the 

rate of convergence is not given explicitly, and its approximation is not given 

precisely. 

 In the article [3] we have developed more faster algorithm of 

Newton-Krylov-Schwarz applied to non stationary problem. Several authors 

have used many other ideas. For example in [8,9] we propose Newton or 

quasi-Newton type methods to solve the non linear system such that 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. 

 These kinds of Newton methods can be used in the context of DDM, 

but numerically the convergence takes a long time for many non-linearity 

test-cases. 

 In the present work we suggest a new approach based on the fixed 

point theorem to solve the nonlinear partial differential equation of reaction-

advection-diffusion that we meet most time in the fluid dynamics and 

environmental problems. 

 We propose to use the Schauder fixed point theorem to linearize the 

two sub-problems. We have calculated explicitly the rate of the optimized 

two order DDM using this technique and Fourier analysis. It is easy to 

optimize the rate of convergence using global optimization functions that are 

implemented in different softwares (Scilab, Matlab,..). 

 In this article we first present the method based on the fixed point 

theorem for which we prove the convergence and we show some numerical 

results obtained using the Scilab software. 

 In the second part of this work, we present the decomposition domain 

optimized order two suggested in [1,2] and we develop the technique for 

calculating explicitly the rate of convergence. 

 Several numerical examples show the efficiency of the proposed 

method. 

 

The Modified Fixed point method 

 In this section we treat the stationary nonlinear reaction advection 

diffusion problem: 
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 For a given one initial function u0, we construct a sequence of 

functions un such that: 
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 In the following we show the convergence of un to the solution of 

problem (2). 

Let )(1

0
 HV . Consider the application 

uv
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:  

such that u is the solution of the variational formulation: 
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Lemma 1.1 if the assumptions: 

-  0 ; 0
2

1
 adivc

 ; and     

-  a,b,c,  and  μ are bounded functions. 

are verified, we assume that the variational formulation (4) has an unique 

solution u in V 

 Proof : Consider the bilinear form a: 
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 The Lax Milgram theorem involves that there exists one solution of 

(2) named φ(v) 

we have by substraction: 
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Theorem 1.1 Suppose that: 

-  0 ; 0
2

1
 adivc


 and    

-   F is K-lipshitzian. 

-   c,a,b and μ are bounded functions and 1


K
 

Then the sequence un+1=φ(un) converges to the unique solution of the 

nonlinear problem (2) 

Proof. The application φ bellow is well defined by lemma 1.1 

We take w=φ(u)−φ(v) used in the coercivity of a(.,.) in the proof of the 

lemma 1.1 then 
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F is K-lipshitzian, then we have: 
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K  then φ is a contraction, and so, applying the Shauder fixed point 

theorem to the application φ we show that the equation φ(u)=u) have one 

solution and the sequence un+1=φ(un) converges to this solution which is 

the solution of problem (3). 
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 In the proof of the theorem we saw that: 

ν|φ(u)−φ(v)|2≤K|u−v||φ(u)−φ(v)| 

 The convergence of the the fixed point algorithm is faster when K is 

increasingly small, so for obtaining a small coefficient K we propose to 

modify the problem (3) as follows: 
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 The parameter ξ is added to the system (3) to construct a new 

sequence with a smaller Lipshitzian K coefficient. 

Theorem 1.2 Suppose that: 

-   0 ; 0
2

1
 adivc


 and    

-   c,a,b and μ are bounded 

-  F∈C2(R) 

-   ξ(x)=F'(|x|) 

Then the sequence un of problem (3) converges to the solution of the 

nonlinear problem (1). 

Proof. We assume that there exists a ε<1 such that 
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 As we have done for the proof of Theorem 1.1, we have: φ is well 

defined because of theorem 1.3 and we show that: 
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Thus 

ν|φ(u)−φ(v)|2≤ε|u−v||φ(u)−φ(v)| 
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and then φ is continuous, so the Schauder theorem involves that the sequence 

un of problem (3) converges to the unique solution of the weak formulation 

of the nonlinear problem (1) □ 

 In the next theorem we generalize the lemma (1.1) for all functions a, 

b and c for the linear problem: 
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Notice that the first condition of lemma (1.1) is omitted in the next 

theorem. 

Theorem 0.3 Suppose that: 

-   ∃ν>0; μ(x)≥ν  ∀x∈Ω 
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As we have done for the proof of Theorem 1.1 we have: φ is well 

defined because 
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 Thus 

(εν+μ0)|φ(u)−φ(v)|2≤(C0+μ0)|u−v||φ(u)−φ(v)| 

and then φ is continuous, so by the Schauder theorem φ has one fixed point 

which is the solution of problem (4) □ 

 

Remark 1 To accelerate the fixed point of problem (1) we propose the 

sequence un such that: 
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we take for example 

 ξ=F'(φ(x))  

ξ=F'(un) 
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Remark 2 With the same way we can apply this concept of fixed point to the 

general following problem: 
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where A and B and μ are non linear functions. Indeed: 

For a given initial function 
0

u , we construct iteratively a sequence function 
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u  as follows: 
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Domain decomposition with optimized interface of two order(DDM 

OO2): 
 The use of finite volumes , finite differences or finite elements 

solvers on high order meshes requires a high cost of computation. 
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 Domain decomposition methods can reduce this cost by splitting 

initial problem into two or more sub-problems with smaller dimensions. 

Many authors have studied domain decomposition methods these last 

decades [10, 11]. Among these methods we consider in this work the method 

called second order optimized method OO2. This method was developed by 

different authors [1,2]. The main idea of the OO2 technique is described 

briefly as follows: 

 We split the domain Ω in two sub-domains Ω1 and Ω2 with an 

interface Γ (see figure 1) 

 
 

 then we built two sequences pu
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and 
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2
 respectively solutions of two 

sub-problems as described bellow: 
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n and τ are the normal and the tangent on Ω1 

 Because of the Fourier analysis we show that the rate of convergence 

in the fourier way is (see [6] for proof) 
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u is the exact solution of the problem . if ωp+2 is the fourier transform of 
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 The conditions 
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 Thus the rate of convergence is 
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  , we have expression (11)  The next theorem 

show the convergence of OO2 method as developed in [6] 
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Proof. see [6] 

Remark 3 In order to optimize the method we need to optimize the rate of 

convergence so we look for: 
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 For optimizing this rate we have implemented the global optimization 

method [7]. Notice that this last problem have at least two optimums. 

Remark 4 The OO2 method converges if c>0. It can be generalized to a 
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In the next theorem we prove the convergence this problem when c<0: 
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the OO2 algorithm converges because 1−c>0.□ 

 We take the generalized artificial coefficients: 
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The Fourier transform of the the rate of convergence is calculated 

using: 

F(f(y−a))=expikaF(f) 

 The Coupled OO2 and Fixed point leads to the next subproblems: 
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and 
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where: 

uuaucuL  


)()(       (20) 

 Remark 5 For the method consisting in the resolution of the partial 

differential equation (1.1) by the finite volumes method, or finite differences 

method and solving the obtained non linear system using Newton, the 

convergence rate depends on the solution of partial differential equation. So 

it’s impossible to compute this rate of convergence. One idea is to suggest a 

non linear decomposition [4,5] by eliminating the terms that we don’t know 

in the convergence rate. Unfortunately, this method is often inaccurate. 

 

III. Finite volume discretization: 

 To apply the finite volumes method, we choose a squared control 

volume C (figure (2)) 
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Figure 2: Control volume 

and we integer partial differential equation on C: 
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 We approximate each member of this equation(using classical Finite 

volume method): 
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 if the control volume C is on the interface Γ(figure (3)), we integer 

the partial differential equation on both C⋃Ω1 and C⋃Ω2. 
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Figure 3:  Control volume which include a part of the interface 

 

 So we have at iteration p+1 of the method (7) and (8): 
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Replacing in (12): 
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because )()(
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we have: 
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so we replace this equality in the last equation to complete the 

interface condition and to ensure the convergence of the finite volumes 

method. 

 

Numerical simulation  

 Numerically, we have implemented the finite volumes method to 

approach the sub-problems obtained after applying the fixed point algorithm.  

We obtain a good accuracy, the error is in the order of 10−5 forward 

the third iteration on some usual test-functions .We take for F respectively 

the expressions 

F(u)=up 

F(u)=eu 

ub

a
uF


)(  

F(u)=log(1−u) 

 The following results show the error between the approximate 

solution using the modified fixed point method and the exact solution 

uexact=xy(1−x)(1−y) of the problem (1).
2Lexact

uuError   

 
Figure 4: The error: c=μ=1, a=b=0  h=0.025; F(u)=u*u 

 
Figure 5: The error: c=2, μ=0.1, a=-1, b=0, h=0.001 and F(u)=exp(u) 
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Figure 6: The error: c=2, μ=0.1, a=-2, b=1, h=0.001 and F(u)=a/(b+u)  

 
Figure 7: c=-1, μ=0.5, a=2, b=-1.5, h=0.001 and F(u)=log(1-u) 

h is the mesh grid. 

 Now, we show the results of combining modified fixed point and 

OO2 algorithm. 

 
Figure 8: case1                                      Figure 9: case2 

 
Figure 10: case3                                          Figure 11:  case4 
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 The figures 8,9,10,11 showing the L2 error between the combining 

modified fixed point solution and the OO2 algorithm and the exact solution. 

 Test case1: c=0.1, μ=1, a=b=-2, h=0.025, F(u)=log(u) and 

uexact=xy(1−x)(1−y). 

 Test case2: c=2, μ=0.1, a=-1, b=0, h=0.001, F(u)=u2 and 

uexact=exp(xy(1−x)(1−y))−1. 

 Test case3: c=-2, μ=0.1 , a=-2, b=1, h=0,001, F(u)=u3 and 

uexact=exp(xy(1−x)(1−y))−1. 

 Test case4: c=-1, μ=0.5 , a=sin(xy), b=−cos(xy), h=0,001, 

F(u)=exp(u)−1 and uexact=xy(1−x)(1−y). 

 h is the mesh grid 

 Here are some examples of results of the proposed algorithm 

corresponding to some tests functions 

 
Figure 12: case1.                 Figure 13: case2. 

  
Figure 14: case3                    Figure 15: case4 

case1:u=xy(1-x)(1-y) 

case2:u=exp(xy(1-x)(1-y)-1). 

case3:u=ln(1-xy(1-x)(1-y)). 

case4:u=exp(x*y)-xy 
 

Conclusion 
 In this work we have developed an optimized domain decomposition 

algorithm applied to a non linear PDE. We firstly have proposed a proof of 
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the convergence of the fixed point technique applied to the non linear 

equation. We have proposed a new approach for computing the convergence 

rate using the Fourier analysis and global optimization. Secondly we have 

presented several test-cases to show the efficiency of this approach. The 

fundamental result is that we obtained a well optimized rate of convergence 

of the proposed algorithm in comparison with global calculation using 

classical solvers. As perspective of the present work, we can study the 

following ideas: 

 - Generalize the method to non linear and non stationary equation 

 - Generalize the approach to the nonlinear diffusion equation. 

 - Apply the method to real problems in fluid dynamics, 

environmental sciences or the image processing. 
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