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Abstract

Boolean functions with good cryptographic properties (high algebraic
degree, balancedness, high order of correlation immunity and high
nonlinearity) have an important significance in stream cipher (combiner
model or filter model) since these functions allow to construct stream cipher
resistant to various attacks. In this work the modified Tarannikov’s
construction method is considered. This construction permits to obtain
functions achieving all necessary criteria for being used in the pseudo-
random generators in stream ciphers. Thus, this allows constructing
recursively the resilient function achieving Siegenthaler’s bound and Sarkar,
et al.’s bound using a resilient function in a smaller number of variables.
Finally, we used the modified Tarannikov’s construction for designing
keystream generators for digital images encryption.

Keywords: Algebraic Immunity, Image Encryption, Nonlinearity, Stream
Ciphers, Resilient Function

Introduction

Boolean functions are crucial cryptographic primitives in stream
cipher and cryptography in general. In the case of stream cipher (the
combiner model or filter model) the Boolean functions are required to have
good cryptographic properties: high algebraic degree, balanced, high order
correlation immunity, high nonlinearity, and high algebraic immunity degree
to counter certain attacks (Berlekamp 1968) - (Armknecht 2004).

Unfortunately, during a research involving construction of Boolean
functions in cryptography, we come immediately to the following problem:
It is impossible for a Boolean function to satisfy simultaneously and
optimally all criteria: high algebraic degree, balancedness, order correlation
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immunity highest possible and high nonlinearity. This means a cryptographer
to seek compromise.

Siegenthaler showed in (Siegenthaler 1984) that any n-variable
Boolean function f used in a stream cipher can both have a high algebraic

degree and high order correlations immunity, since its degree is upper
bounded by n—t . If fis t-th order correlation immune function (0<t<n)

has algebraic degree smaller than or equal ton—t. Moreover, if fis a t-

resilient function (0 <t <n) it has algebraic degree smaller than or equal to
n—t-lift<n-2 andequaltolift=n-1.

Sarkar and Maitra proved in (Sarkar 2000) divisibility bound on the
Walsh transform values of an n-variable, t-th order correlation immune
(resp. t-resilient) function, with t < n—2: these values are divisible by 2'"
(resp. by 2"*? ). This provides a nontrivial upper bound on the nonlinearity of
resilient functions (and also of correlation immune functions, but non-
balanced functions present less cryptographic interest), independently
obtained by Tarannikov (Tarannikov 2000) and by Zheng and Zhang (Zheng
2001): the nonlinearity of any n-variable, t-resilient function is upper

bounded by 2" — 2", Tarannikov proved that resilient functions achieving
this bound must have degree n—t—1 (that is, achieve Siegenthaler’s bound);
thus, they achieve the best possible trade-offs between resiliency order,
degree and nonlinearity.

In this paper, the modified Tarannikov’s construction method is
introduced. This construction permits to increase the cryptographic
parameters: algebraic degree, resiliency and nonlinearity and to define many
more resilient functions where the degree, resiliency and nonlinearity
achieved are high. Thus, to allow obtaining resilient functions achieving the
best possible trade-offs between resiliency order, algebraic degree and
nonlinearity (that is, achieving Siegenthaler’s and Sarkar, al.’s bounds).

Preliminaries
In this section, few basic concepts and results are introduced. A

Boolean function on n -variable may be viewed as a mapping from F,'in to

F,. By @ we denote the sum modulo 2. The Hamming weight wt(f) of a

Boolean function f on F," is the size of its support {x eF,; f(x) =1}.
By(n,t,d,N), we mean an n -variable function, t-resilient function

having degree d and nonlinearity N . In the above notation, we may replace
some components by (—) if we do not want to specify it.
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An n-variable Boolean function f has a unique algebraic normal

form (ANF): f(X,n X)) =8+ D 2%+ D8 XX, oty XXXy,
i-0

1<i<j<n
where the coefficientsa,, a;, & ;,.., a,, ,belongto F,.

The Walsh transform of an n -variable Boolean function f defined by
WE (u) = > (-1 ™** vueF) (2.1)

xeFy'

where X.U = X;.U; +...+ X, .U, denotes the usual scalar product of vectors u
and X .

The algebraic degree, deg(f), of a Boolean function f is the

number of variables in the highest order term with non zero coefficient. If the
algebraic degree of f is smaller than or equal to one then f is called affine

function. An affine function with a constant term equal to zero is called a
linear function.

A Boolean function fon F)is balanced ifwt(f)=wt(f ®1). In

other words, f is balanced if and only if wt(f)=2"". Correlation

immune functions and resilient functions are two important classes of
Boolean functions. Xiao and Massey (Xiao 88) provided a spectral
characterization of correlation immunity. A function f is t-th order
correlation immune if and only if its Walsh transform satisfies:Wf (u) =0,
for 1<wt(u) <t, where wt(u)denotes the Hamming weight of u, and

function f is balanced if moreoverWf (0)=0,VueF,’, 0<wt(u)<t. A
balanced t-th order correlation immune function is called t -resilient.

The Boolean functions used in a nonlinear combiner must have high
correlation immunity. If the combiner function is not correlation immune
then the attacker can find correlations between the keystream and the
contents of one of the LFSRs. This allows the attacker to mount a divide and
conquer attack in which internal state of each LFSR is recovered
independently of the other LFSRs.

Nonlinearity of a Boolean function f measures the distance of the

Boolean function from the set of all affine functions. The nonlinearity Nf of
an n -variable Boolean function f , can be written as

Nf =2"" —%max[wf (u)|. (2.2)

ueF)
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It is upper bounded by 2"*—22  (we shall call this bound the
universal bound), due to Parseval’s relation D Wf?(u)=2"".

ueF,
(2.3)

Boolean functions used in stream ciphers must have high
nonlinearity. A high nonlinearity weakens the correlation between the input
and output and prevents the attacker from using linear approximations of the
function.

The algebraic immunity Al (f)of a Boolean function fis the
smaller degree of non null function gsuch that f *g=00or(1® f)*g=0.
In other words, the minimum value of d such that f or 1&® f admits an
annihilator of degreed . It has been proven in (Meier 2003) that the algebraic
immunity of any n-variable Boolean function is upper bounded by[%].
Hence, if the degree is greater than [%] the best possible algebraic immunity
is 3]

Proposition 1: (Dalai 2006) Let f be a functions on n variables with an
algebraic immunity Al (f) =d. Let Ibe an affine function with any of the
following properties:

1. lis a function on X,..., X,
2. lis a function on Xi,..., X, and some other variables.
3. lis a function on variable other than X,,..., X, . Let f @1 be a

function on 1 variable. Then d —1< Al (f @1)<d +1 for case land
2,and d <Al (f @l)<d +1 for case 3.

Tarannikov’s Construction
In (Tarannikov 2000), Tarannikov has proposed an important
construction of resilient functions. Let g, andg, be two Boolean functions

onF,' such thatNg, = Ng, = &, besides g, depends on the variables x; and
x; linearly and g, depends on a pair of the variables (x;, X;) quasi-linearly.
Consider the function

9 (X, X ) = (1+ X2 @ Xn+1)91(X1v---v X,) @ (Xn+2 ® Xn+1)gz(x11---a X)) D X, 0N
F,""?. Then, we have:

1. If g, andg, are t-resilient, then g is (t+1) — resilient. Moreover, ¢

depends on the variables X, and X.,, quasi-linearly.
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2.Ng=2"+20
J If g, andg,achieve the maximum possible nonlinearity
2" — 2" then the nonlinearity 2" — 22 of g is the best possible;

Modification of Tarannikov’s Construction:

We will propose a modification of Tarannikov’s construction. Let us
first present the construction.
Construction 1: Let n,tbe positive integers such thatt<n. Letg

(n,t,d,Ng). Letf=x_,®x ,®g andh=x_,®x ®g be two n+2-
variable functions, where 97 (X0 X e X Xgs Xop ) =

"1 p-1r Pnlt 2

90X, Xpreens X1, Xy @ X,,, ) i the function generated from g by replacing the

1 -1 Tl

n+2 n+1 n+2

variable x, by (x,,, ®X,.,). We construct a function G in n-+ 4 variables
in the following way, G =(1®x,,, ® X,,;)f ®(X,, DX, )h@®X,, . Then

the following important result is obtained.
Lemma 1: LetG be a function of n+4 variables as described in
Construction 1. Then Gis (t+3) — resilient with nonlinearity

NG =2"% +8Ng . Moreover, G depends on the variables x,,, and X,,,
quasilinearly. If gachieves a maximal possible nonlinearity 2"* — 2'**, then

nonlinearity NG =2"*_-2"* of G is the best possible and

deg(G)=1+deg(g).
Proof:
By lemma 4.2 and 4.4 of (Tarannikov 2000) the functions f and h are t+2-

resilient functions on F,"?, Nf = Nh=4Ng = «. Moreover, the function f
depends on the variables X, X,,,linearly, and the function h depends on

n+4

the variables X, X,., quasilinearly.

deg( )= deg(h) = deg(g)

By lemma 5.1 of (Tarannikov 2000) the functionG is a t+3-resilient function
onF,"* with nonlinearity NG =2"7 + 20 =2"7 +2x4Ng = 2"* +8Ng .
Moreover, G depends on the variables X ., and X ,quasi-linearly. If g
achieves a maximal possible nonlinearity2"* —2'**, then. We have
NG =22 +8Ng = 2"% +8(2"* = 2'1)=2"3 _2"* s the best possible
nonlinearity of G .

The construction 1 can be applied iteratively.

Construction 2: Let G,be the initial function of n variables andG, the
constructed function after k -th iteration. Let us denote by G, the function
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generated fromG, by replacing the variable X, by(X ., ®X ,..). Let

fk+1 = Xn+4k+2 ® Xn+4k+1 ® Gk and hk+1 = Xn+4k+2 @ Xn+4k @ G; Then the
constructed function at k +1-th step,

Gk+l = (169 Xn+4k+4 (—B Xn+4k+3)fk+l @ (Xn+4k+4 (_B Xn+4k+3 )hk+l @ Xn+4k+3'
We have following results.

Proposition 2: Fork =0, G, =(1® F )G, ® F.G, ® H, where deg(F, )=k

and deg(H, )=k +1.

Proof:
Gl = (1® Xn+4 n+3)f @( n+4 n+3 )h @ X

= (:]-C'D Xnia D Xoi3 )Go ( Xnia D Xoi3 )Go (1@ Xnea @ Xpi3 )( Xnio @ Xn+l)
D (X5 @ Xous NXn, @ %, ) © X

=(1®F)G, ®FG, ®(1® F,)x
=(1®F)G, ®FG, ®H,
where F, and H,are 1 and 2 degree polynomials respectively.

Let wus assume that this is true for somei>1, i.e,

G =(1®F)G, ®FG, ®H,, where Fis a i-degree polynomial and H. is a
i+1-degree polynomial. We have
G = (1@ Xosaiva D Xnigiva )(Xn+4i+2 D x ® Gi)("B

( n+4|+4 @ Xn+4i+3 )( n+4|+2 @ Xn+4i @ GI*)@ Xn+4i+3
= (1® Xn+4i+4 @ Xn+4i+3 )G ®( n+4i+4 @ Xn+4i+3 )GI* @ (1® Xn+4i+4 @ Xn+4i+3 )(Xn+4i+2 @ Xn+4i+1)®
( n+4|+4 @ Xn+4i+3 )( n+4|+2 @ Xn-¢-4i )@ Xn+4i+3

n+2 n+3

n-¢—l)(_B F( n+2 @ Xn)(_B Xn+3

n+2

n+4i+1

= (16D Xn+4i+4 n+4|+3)((1<—D F )G D FG ®H, )(-D( n+4|+4 ® Xn+4|+3)((1<-D Fi*)GO ® Fi*G; ® HI*)

® (16_) Xn+4i+4 ® Xn+4i+3 )(Xn+4i+2 @ Xn+4i+1)®( n+4|+4 D Xn+4|+3 )(Xn+4|+2 @ Xn+4i )G_) Xn+4i+3
Where F~ and H, are generated by replacing the variable x,., by

( Xnsdiso n+4l+1) in F and H, respectively. Thus,
G (169 F @ F (Xn+4|+4 @ Xn+4|+3) @ F (Xn+4|+4 @ Xn+4|-+—3)k5 @

F, @F(x ® Xpa11) © F (Kpuais ® Xnains) Bg © (L@ Xy 410 D X,5)H, @

( i n+4i+4 n+4i+4 n+4i+4

(Xn+4|+4 n+4|+3)H @ (1EB Xn+4|+4 @ Xn+4i+3 )( n+4|+2 @ Xn+4i+l)®

(Xn+4|+4 @ Xn+4|+3 )(Xn+4|+2 @ Xn+4|)EB Xn+4i+3

This implies

G,=01®F,)G, ®F,G, ®H,,, where F, andH,  are i+1 and i+2

degree polynomials respectively.
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Proposition 3: Letgbe a n-variable function with an algebraic immunity
Al (g)=d. LetG be a function on n+4 variables a described by
construction 1. If f and h have one of the following properties:

1. Al (f)=Al,,(h)=d

2. Al (f)=Al,(h)=d+1

3. Al,(f) = Al,(h)
Then d -1< Al ,(G)<d+3 for case 1, d <Al ,(G)<d+3 for case 2
and 3.
Proof:

First we prove the upper bound. Lete be a non null function with
lowest degree such that g*p=0or (1®g)*p=0. Let g=a ® f*X,
where ¢, fare functions on n-—1variable, free from the variablex,.
According to proposition 2, we get G =(1® F,)g ® F,g" ® H,where F, and
H,are degree 1 and degree 2 polynomials respectively. So,
leFR)g@FRg =1oF ) a®p*x,)@Fa® *(x., ®x,..,))
=a®f*X, OF *ﬂ(xn D X,y @ Xn+2): 9@ Fl*ﬂ*(xn D X, @ Xn+2)'
If g*p=0,thenG*p*(1@®H,)* (DX, ®X,, DX, ,,)=
((eR)g@ Ry ©H ) p* O H,)* @@ X, ©X,, ®X,,)=
(g ®F *ﬁ(xn D Xy @ Xn+2)® Hl)*‘P*(l@ Hl)*(]'@ X, © Xy @ Xn+2) 0.
If 1®g)*p=0,then1®G)*p*1®H,)*1®X, ®X,, DX,,)=0.
Hence, Al ,(G) <d+2+1.

Now we prove the lower bound. Let
hy =X @ 9(X,, Xp e X, g0 X,y D X, ), according to proposition 1 case 1, we

haved —-1< Al ,(h)<d +1. According to proposition 1 case 3, we have
d<Al_,(f)<d+1landd <Al ,(h)<d+1.

If Al ,(f)=Al_,(h)=d. Following proposition 2 of
(Belmeguenai 2009) case 2 and following proposition 1 case 1 we have
Al..,(G)>d-1.

If Al ,(f)=AIl_,(h)=d+1. Following proposition 2 of

(Belmeguenal 2009) case 2 and following proposition 1 case 1 we have
n+4 (G) 2 d

If Al ,(f)=AIl,,(h). Following proposition 2 of (Belmeguenai
2009) case 1 and following proposition 1 case 1 we have Al ,(G) >d.

n+2
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In the following theorem, we present the lower and upper bound on
algebraic immunity of G, in terms of the algebraic immunity of G,,.

Theorem 1: Let G be the initial function of n variables andG, the
constructed function after k -th iteration described by construction 2. Then:
Al (G,)-1< Al (G, )< Al (G,)+k +2.

Proof:

Following proposition 3 we have Al (G, )> Al (G,)-1.

Let® be a non null function with lowest degreed such that G,*® =0 or
1®G,)*®=0. Let G,=Y®Z*x,where Y,Zare functions on n-1
variable, free from the variable X, . According the proposition 2, we get the
function G, =(1®F, )G, ® F.G, ® H, where F,_ and H, are degree k and
degree k+1 polynomials respectively. So,
l®F )G, ®FG, =1®F YD Z*X,)®DF (YD Z*(X,, DX,,,))
=Y®Z*X ®F *Z(x, DX, DX ,)=G, ®F *Z*(x, ®X,, ®X,,,).

If G,*® =0, thenG, *®*(1®H, )*1® X, ®X,,, DX,,,)=

(1®F )G, ®FG, ®H, J*d*(1®H,)*1® X, ®X,, DX, ,,)=

(G, ®F *Z(x, ®X,,®X,,)®OH,)*®*(1®H,)*1Dx, ® X

n+l

@sz):o

n+1 n+1

If l®G,)*®=0,then(1®G,)*D*1OH,)*1® x, ® X
Hence, Al,,,(G,)<d+k+2.

Improved Resilient Functions used in Previous Keystream Generators:
Example 1: Let us consider an (8,3,4,27 - 24) initial function
Gy = (X ® XgXs D XX D XX X, X, D XX, D XX, D X, X, ) D Xy D X D XgXe
D XgXs D X X, D XX, DX, DX,

this function is optimized considering order of resiliency, nonlinear,
algebraic degree. The constructed functions G;,G,,G;and G,are
respectively an (12,652 -27), (16,9,6,2"° —2°), (2012,7,2* —2%) and
(24158,2% —2'%). These function all are optimized considering order of

resiliency, nonlinear, algebraic degree, i.e. the functions that achieve
Siegenthaler’s and Sarkar, al.’s bounds.

Example 2: Fourn =11, we consider an (11,6,4,2° —27) initial function G,
the functionG, used in this example is proposed for ACHTERBAHN-80

(Gammel 2005), this function is optimal, i.e. that achieve Siegenthaler’s and
Sarkar, al.’s bounds. The functionsG, is an (15,9,5,214 —210) function. Next

®Xn+2):0'

n+1
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function G,is an (19,12,6,218—213) function. The function G,is an
(2315,7,2% —2%) function. At the next step we have G,is an
(27,18,8,226 —219) function. All the functions G,,G,,G,and G, are achieve

Siegenthaler’s and Sarkar, al.’s bounds.
Example 3: Let us start with an initial (13,8,4,212 - 29) functionG, proposed

for Achterbahn-128/80 (Gammel 2006), this function achieve Siegenthaler’s
and Sarkar, al.’s bounds. The functions G, an(17,1152 -22). The

function G, is an (2114,6,2%° — 2 ). The function G,is an (2517,7,2% — 2¥),
The function G, is an (29,20,8,228 —221). The functionsG,,G,,G,and G, all
achieve Siegenthaler’s and Sarkar, al.’s bounds.

Conclusion

A modified Tarannikov’s construction method is presented. This
construction can be applied iteratively, therefore permitting to increase the
cryptographic parameters: algebraic degree, resiliency, nonlinearity and
algebraic immunity, and to define many more resilient functions where the
algebraic degree, resiliency and nonlinearity achieving are high. Thus, the
construction permits to design: from any optimal resilient functions
achieving Siegenthaler’s bound and Sarkar, al.’s bounds a large class of
optimal function achieving Siegenthaler’s bound and Sarkar, al.’s bounds.
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