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Abstract 
In this paper, we consider a non linear epidemic model SIQS by experiencing the disease; 

whenever infected, the disease individuals will return to the susceptible class after a fixed 

period of time. First, the local stabilities and global stability of the infection-free equilibrium 

and endemic equilibrium are analyzed, respectively. Second, the endemic equilibrium is 

formulated in terms of the incidence rate, and after we stydy local and global asymptotic 

stability. We study the stochastique systme by pertubing the contact rate, and we mainly use 

the theorie of Itô formula. Finnaly we study the spatial spread model with traveling wave 

solution. 

Keywords: Basic reproductive number, epidemic model, global stability, 

local asymptotically stable 

 
Introduction 

 Classical epidemic models assume that the size of the total population is constant. 

More recent models consider a population size variable to take into account a longer period 

with death and disease causing reduced reproduction. Generally, a model contains a disease-

free equilibrium and one or multiple equilibria are endemic. The stability of a disease-free 

status equilibrium and the existence of other nontrivial equilibria can be determine by the 

ratio called the basic reproductive number, which quantifies the number of secondary 

infections arise from infected in a population of sensitive. 

In recent years the dynamics of the non linear epidemic models have received 

considerable attention in the refferences, in order to describe the effects of disease in 

differents models.   Motivated by the comment of the differents autors In this paper, we 
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discuss the equilibrium and global , local stability of the non linear SIQS epidemic model 

with constant paramters. We have made the following contributions: 

1. The local and global stabilities of the infection-free equilibrium are analysed, 

respectively in section 3. 

2. Second the endemic equilibrium is formuled in terms of the insidence rate and the 

differents positive parametres and lacally, globallay asymptotic stabilities are 

found in section 4 and 5. 

3. We study the sochastic system by pertubieng the contact rate in section 6. 

4. Finally we considere the spatial spread of the ifectives and susceptibles in the 

section 7 then we analyse the system we travelling the wave solution in section 8. 

Model equations 
            This paper considers the following SIQS nonlinear epidemic model:  

    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

.

1

.

2

.

3

S t S t I t kS t I t ,

I t S t I t kS t I t ,

Q t I t S t Q t

 = µ + γ − µ −β + α − + ν
 = β − µ + γ + α + + ρ

 = γ − γ − µ


                                   (2.1) 

Where S (t) + I (t) + Q (t) =N (t) denotes the sizes of the population at time t; S (t), I 

(t) and Q (t) denote the sizes of the population susceptible to disease, of infective members, 

and members who have been in quarantine with the possibility of infection, respectively. It is 

assumed that all newborns are susceptible. The positive constants μ₁, μ₂, and μ₃ represent the 

death rates of susceptible, infectivity and quarantine, respectively. Biologically, it is natural 

to assume that 1 2 3min{ , }µ ≤ µ µ .    The positive constants μ and γ represent the birth rate 

(incidence rate) of the population and the recovery rate of infective, respectively. The 

positive constantsα , β are the average numbers of contacts infective for S and I. The term γ 

S, indicate that an individual has survived from natural death in a recovery before becoming 

susceptible again. The constant k is the rate of unknown members infected which is detected 

by the system. The positive constants ν, ρ are the parameters of immigrations. 

 The initial condition of (2.1) is given as 

1 2 3( ) ( ), ( ) ( ), ( ) ( ), 0,S I Q tη η η η η η τ=∅ =∅ =∅ − ≤ ≤                                      (2.2) 

             Where 1 2 3( , , ) ,T∅ = ∅ ∅ ∅ ∈  such that: 

1 0 2 0 3 0( ) (0) , ( ) (0) , ( ) (0) .S S I I Q Qη η η=∅ = =∅ = =∅ =                                (2.3) 
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Let C denotes the Banach space C ([ τ− , 0], 3R ) of continuous functions mapping the 

interval [ τ− , 0] into 3R , with τ  is latent time. 

 Consider the system without the parameters of immigration and study the stability of 

the system, and since Q (t) does not appear explicitly in the first two equations of system 

(2.1), which is positive it means that the solution remains positive for any trajectory 

initialized to positive conditions. We consider the system:   

               
( )

( )

.

1

.

2

S(t) S(t) I(t) kS(t)I(t),

I(t) S(t) I(t) kS(t)I(t),

 = µ + γ − µ −β + α −

 = β − µ + γ + α +

                    (2.4) 

 With the initial conditions (2.2), (2.3)                  

 Since
.

1N - Nµ≤  , and by integration we get:  

1
0

tN N e µ−≤  , for all t≥0                                                                                            (2.5) 

 With initial conditions: 

0 0 0(0) , (0) , (0)S S I I Q Q= = =  , and 0 0 0 0N S I Q= + + .                                                 (2.6) 

 Then we consider the system only in the region 2
+

1

={(S,I) R ,S+I N } Sµ
µ

Ω ∈ ≤  , is 

positively invariant set of (2.4). 

The disease-free equilibrium and its stability. 
Local stability  
 An equilibrium point of system (2.4) satisfies  

( )
( )

1

2

S I kSI 0,

S I kSI 0,

 µ + γ − µ −β + α − =

β − µ + γ + α + =                                                                     (3.1)  

 It can be seen that, whenever all the seven associated parameters assume positive 

values, system (3.1) has a disease-free equilibrium of the form 0 (0,0)TE = .  

 We start by analyzing the behavior of the system (2.4) near 0E .The characteristic 

equation of the linearization of (2.4) near 0E  is: 

( )
( )

1

2

-A                                       
det 0

                                    -A

µ γ µ β α

β µ γ α

 + − −
=  − + + 

                                      (3.2) 

0E , is locally asymptotically stable if and only if the trace of the Jacobin matrix near 0E is 

strictly negative and its determinant is strictly positive. 
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0E , is locally asymptotically stable ⇔
1 2

1 2

-( + )-( + )<0
( )( ) >0
µ µ µ α β
µ β µ γ µ γ α αβ


 + − − + + −

             (3.3) 

 As long as condition (3.3) holds the disease-free equilibrium of system (2.4) is unique 

and stays locally asymptotically stable. 

 Let us define the basic reproduction number of the infection as 

( )( )0
1 2 1

R αβ µ γ
µ β µ α β µ β

+
= +

+ + + +                                                                              (3.4) 

Lemma  
 If 0R <1, then the disease-free point 0E is locally asymptotically stable; Stable if 0R

=1, and unstable if 0R >1. 

Global stability  
Theorem 1 
 If 0R <1, then the disease-free point 0E is globally asymptotically stable in Ω. 

Proof 

 Let ( )0 0,S I ∈Ω .Since ( )
.

2I(t) S(t) I(t) kS(t)I(t),= β − µ + γ + α +  

 Then ( )
.

2I(t) I(t)≤ − µ + γ + α  so by integration, we get 

( )2 t
0I(t) I e− µ +γ+α≤   , for every t≥0                                                                (3.5) 

If 0R <1 then ( )2µ + γ + α >0. Hence, I (t) converges to zero. 

The second equation from (2.4) gives 

( ) ( ) ( )2
.

t
1 1 0S S I kSI S I e− µ +γ+α= µ + γ − µ −β + α − ≤ µ + γ − µ −β + α                                 (3.6) 

Integrating the above inequality, we obtain 

( )
( )( )21 1t( ) t ( ) t0

0
1 2

IS(t) S e e e ,
( )

− µ +γ+α− µ +β−µ−γ − µ +β−µ−γα
≤ + −

 µ + β − µ − γ − µ + γ + α  
           (3.7) 

( )
mt0

0
1 2

IS(t) S e ,
( )

−
 α

≤ +   µ + β − µ − γ − µ + γ + α   
                                                                  (3.8) 

With  

( )1 2m min{( ), }= µ + β − µ − γ µ + γ + α                                                                 (3.9)  

So if 0R <1, S (t) converges to zero.□ 
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Lemma2. [7] 
Let D be a bounded interval in ℝ and h: (t₀, ∞) ×D→ ℝ, be bounded and uniformly 

continuous function, let x: (t₀, ∞) ×D→ ℝ be a solution: 

( )
.
x h t,x=                                                                                   (3.10) 

 Which is defined on the whole interval (t₀, ∞), then 

( ) ( )

( ) ( )
t t

t t

(i) liminf h t,x 0 limsuph t,x ,

(i) liminf h t,x 0 limsuph t,x ,

∞ ∞→∞ →∞

∞ ∞

→∞ →∞

≤ ≤

≤ ≤                      (3.11) 

 Where, 

( ) ( )
t t

x liminf x t ,x limsup x t .∞
∞ →∞ →∞
= =                                                          (3.12) 

Theoreme2. 
 Let R₀=1, then the disease-free point 0E is globally asymptotically stable in Ω. 

Proof 
Let 0 0 0( , , )S I Q ∈Ω . 

 From the second equation to the system (2.2) we obtain ( )2 t
0I(t) I e− µ +γ+α≤  

 Since R₀=1, then ( )( ) ( )( )2 1 2αβ µ γ µ α β µ β µ α β+ + + + = + + + , and 

dI 0.
dt

≤  

 So I (t) is a positive and non-increasing function, hence: 

( ) [ )I t t l 0, .→∞ ∈ ∞


 

 By the application of lemma2 to the third equation to the system (2.2), we get: 

                   3 3I Q 0 I Q∞ ∞
∞∞γ − µ ≤ ≤ γ − µ| | | |                                                                 (3.13) 

 Therefore   

3 3

l lQ Q∞
∞

γ γ
≤ ≤ ≤

µ µ                                                                                        (3.14)  

So 

           t
3

llimQ(t) Q Q Q( )∞
∞→∞

γ
→ = = = ∞

µ .                                   (3.15) 

 

 



European Scientific Journal  February 2013 edition vol.9, No.6  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

172 
 

Applying the same method using lemma 2 we deduce that       

t
limS(t) S( )
→∞

= ∞                                                                                           (3.16) 

Since R₀=1, the point 0E is stable.  

Hence for every ε>0, there exist η (ε) such that if  

( )0 0 0S I Q+ + ≤ η ε                                                                                  (3.17) 

  Then for every  t≥0, S(t) ≤ε, I(t)≤ ε, et  Q(t)≤ ε.  

We get l≤ ε,   for every ε>0 therefore l=0 

Finally for all ( )0 0,S I ∈Ω  

0 0 0t t t
limS(t) S ,limI(t) I ,et limQ(t) Q .
→∞ →∞ →∞

= = =   

Endemic equilibrium and its locally asymptotical stability 
From the previous section it is follows that when the trivial equilibrium E₀ of system 

(3.1) is locally asymptotically stable, then the endemic equilibrium does not exist. When 0R  

> 1, system (3.1) has a unique non-trivial equilibrium * * *( , )TE S I=  other than the disease-

free equilibrium, where 

( )
( )

( ) ( )
( )

2 1 1* 2

1 2

,
k

T

E
k k k k

β µ γ µ γ µ α µ γ µµ α γ β
µ γ µ µ γ

 + + − + −+ +
= − − −  + − + 

                            (4.1) 

 By introducing ( ) ( ) ( ) ( )* *, ,x t S t S y t I t I= − = −  who are the small perturbations.  

 System (3.1) is centered at *E and its linear part reads 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )

.
1 1 2

2 1

.
1 2 2

2 1

x t x t y t

y t x t y t

α µ γ µ β µ µ γ µ γ
µ γ µ γ µ

µ γ µ µ γ α β µ γ
µ γ µ γ µ

    + − + − − +
= +    + + −    


   + − + − − + = +    + + −   

                                    (4.2)  

 The characteristic equation of (3.1) at *E is 

( ) ( )( )

( )( ) ( )

1 1 2

2 1

1 2 2

2 1

-A                 
det 0

         A   

α µ γ µ β µ µ γ µ γ
µ γ µ γ µ

µ γ µ µ γ α β µ γ
µ γ µ γ µ

  + − + − − +
  + + −   = + − + − − + − + + − 

                                       (4.3)  

 *E , is locally asymptotically stable if and only if the trace of the matrix is strictly 

negative and its determinant is strictly positive.     
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*E , is locally asymptotically stable ⇔
1 2

<0

( )( ) >0

α
β
µ β µ γ µ γ α αβ




 + − − + − −

            (4.4) 

The global stability for endemic equilibrium 
 Here, we restraint to the case when 1 2µ µ µ= = , we have in this case we have the 

system: 

( )

( )

.

1 1

.

2 2

S S I kSI P (S,I),

I S I kSI P (S,I),

 = µ + γ − µ −β + α − =

 = β − µ + γ + α + =

                                                (5.1) 

Theorem3. Dulac Critere 
 We have D₁={S(t)>0, I(t)>0, S+I≤1}is the region connexe of plan to phase. If the 

function exist: 

( ) ( )1 2+
DP DP
S I

∂ ∂
∂ ∂

,
.

1( , )S P S I= , 
.

2 ( , )I P S I=                                                                  (5.2) 

 The orbites in D₁ are not closes. 

Theorem4. 
 If R₀> 1, then the endemique-disease point *E is globally asymptotically stable. 

Proof 

 Take a Dulac function [12], 1( , )D S I
SI

=  for S, I>0. We have 

( ) ( )1 2
2 2+

DP DP
S I S I

α β∂ ∂
= − −

∂ ∂ <0                                                                                  (5.3) 

 Hence, according to Dulac criterion, the system (2.4) has not periodic orbits. Since 

(5.3) admit only two equilibriums E₀ and *E . When R₀> 1 and E₀ is unstable, hence by 

Poincar- Binedixon theorem [12], *E is globally asymptotically stable.   

The stochastic system by perturbing the contact rate 
 We limit ourselves here to perturbing only the contact rate so we replace k by k+ σ W 

(t), where W(t) is white noise (Brownian motion). The system (2.4) is transformed to the 

following Itô stochastic differential equations: 

( )
( ) ( )

1

2

3

dS S I kSI SIdW,

dI S I t kSI SIdW,
dQ I S Q

 =  µ + γ − µ −β + α −  − σ  = β − µ + γ + α + + σ
 = γ − γ − µ

                                                (6.1) 
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 In this section, we will prove, under some conditions, that 0E is globally 

exponentially mean square and almost surely stable, and for this purpose, we need the 

following Theorem: 

Theorem5. 
 The set Ω is almost surely invariant by the stochastic system (6.1). Thus if

0 0 0( , , )S I Q ∈Ω , then [ ]( , , ) 1P S I Q ∈Ω = . 

Proof 

 The system (6.1) implies that 1- NdtdN µ≤ , hence 1
0

tN N e µ−≤  , for all t≥0. 

Since 0 0 0( , , )S I Q ∈Ω   

 We have ( )2 t
0I(t) I e− µ +γ+α≤   , for every t≥0, then ( )2µ + γ + α >0. Hence, I (t) 

converges to zero. 

 Because, 0 0 0>0, >0, >0S I andQ , then there exist 0ε >0 such that 

0 0 0 0 0 0> , > , >S I andQε ε ε . 

 Considering: 

{ } 0inf 0, ( ) , ( ) , ( ) >t S t I t Q t forετ ε ε ε ε ε= ≥ ≤ ≤ ≤ ,                                                      (6.2) 

 { }
0

lim inf 0, ( ) 0, ( ) 0, ( ) 0 .
t

t S t I t Q tετ τ
→

= ≥ ≤ ≤ ≤                                                             

(6.3)  

 Let 

1 1 1( ) log log log .
( ) ( ) ( )

V t
S t I t Q t

= + +                                                                              (6.4)  

 Then, using  Itô formula we have, for all t≥0 and T [ ]0,t ετ∈ ∧ , 

( ) ( )
( ) ( ) ( ) ( ) ( )2

1
1( )
2

I T
dV t kI T I T dT I T dW T

S T
µ β µ γ α σ

 
= + − − − + + + 
  

 

              ( ) ( )
( ) ( ) ( ) ( ) ( )2

2
1
2

S T
kS T S T dT S T dW T

I T
µ γ α β σ

 
+ + + − − + − 
  

 

              ( )
( )

( )
( )3

S T I T
dT

Q T Q T
µ γ γ
 

+ + − 
  

.                                                                         (6.5)  

( )dV t ≤ ( ) ( ) ( ) ( )2 2
1 2 3

1 1
2 2

kI T I T S T dTµ µ µ α β µ + + + + − + + +  
 

                 ( ) ( )( ) ( ).I T S T dW Tσ+ −                                                                             (6.6) 
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 For all T [ ]0,t ετ∈ ∧ , with 1 2 3L µ µ µ α β µ= + + + + − , therefore  

( ) ( )( )( ) ( ).dV t LdT I T S T dW Tσ≤ + −                                                                        (6.7) 

Hence  

( ) ( )( )
0

( ) ( ).
T

V t LT I u S u dW uσ≤ + −∫                                                                             (6.8) 

 With proposition 7.6 in [7] ( ) ( )( )
0

( )
T

I u S u dW uσ −∫  is a mean zero process then: 

 ( )( )E V t LT≤                                                                                                                 (6.9)  

For all t≥0,    ( ) ( ) .EV t L t Ltε ετ τ∧ ≤ ∧ ≤                                                                     (6.10)  

Moreover ( ) 0, ( ) 0, ( ) 0, ( ) 0V t S t I t andQ tε ε ε ετ τ τ τ∧ ≥ ∧ ≥ ∧ ≥ ∧ ≥ thus, 

[ ] [ ]( )>( ) ( ) ( )t tEV t EV t E V t
ε εε τ ττ χ χ≤∧ ≥ × + ×                                                             (6.11)  

[ ] ( ) 1( ) ( ) logtEV t EV t P t
εε εττ χ τ

ε≤∧ ≥ × ≥ ≤                                                               (6.12)  

 Where Dχ is the indicator function of a subset D. Combining (6.9) with (6.12) gives 

for all t≥0, ( ) 1log

LtP tετ

ε

≤ ≤
.  Tending ɛ to zero, we obtain for all t≥0, ( ) 0P tτ ≤ = , from 

where ( ) 0P τ ≤ ∞ = .□ 

Spatial spread model 
 We consider the spatial spread of the infectives and susceptibles. By modeling the 

model (2.4), we adding the term 2S  represent the interaction between the same kind of species 

in the susceptible population. We obtain the following model: 

 
( )

( )

2
1 1

2 2

S S kSI I S d S,
t
I S I kSI d I,
t

∂ = µ + γ − µ −β − + α −µ + ∆ ∂
∂ = β − µ + γ + α + + ∆
∂

                                 (7.1) 

 Where S=S(x,t) and I=I(x,t). S∆  , I∆ represent the diffusion of the infective and 

susceptible densities respectively. 

Traveling wave solution  
 We seek a constant shape travelling wave solution of (7.1) by setting 

( ) ( ), ( ), , ( ),S x t S z I x t I z= =
 

   z x ct= − ,                                                        (7.2)  

 Where c is the wave speed, substitute (7.2) into (7.1) we get                                                                               
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

22

1 1 2

2

2 2 2

S z S z
c S z kS z I z I z S z d ,

z z

I z I z
c S z I z kS z I z d ,

z z

 ∂ ∂ = µ + β − µ − γ + − α + µ −
 ∂ ∂

 ∂ ∂
 = −β + µ + γ + α − −

∂ ∂

 
    

 
   

(7.3)  

 This assumption is a legitimate one because the infective population is very active in 

infecting other individuals in the total population and it is capable of moving more but the 

susceptibles is not so. Therefore we assume that 1d is negligible compared to 2d , and then we 

analyze (7.3). 

 Hence, with 1d 0= , and ( ) 'S z
S

z
∂

=
∂




 we can rewrite (7.3) as three ordinary differential 

equations 

( )

( )

2

1'

'

2'

2

S kSI I S ,
S

c

I T,

I kSI S cT
T ,

d


µ + β − µ − γ + − α + µ =


 =

 µ + γ + α − −β −

=



    


 

    


                                              (7.4) 

 In the (S, I,T)
   phase space there are three steady states, namely 

1(0,0,0) (1 ,0,0),(S, I ,T)
∧ ∧ ∧

µ + β − γ
−

µ

  

 ,                                                     (7.5)  

 With ( )11
2

1 2
1(S, I ,T) (m m )e , * ,0

k k
S

∧ ∧ ∧ µ −γ 
− 

µ 
∧

 
µ + γ + α β = + − 

 
 

  



 , 1 2m ,m are the constants . We expect the 

traveling wave front solution to be the form (0,0,0)to(S, I ,T)
∧ ∧ ∧
   and from 

1(1 ,0,0)to(S, I ,T)
∧ ∧ ∧

µ + β − γ
−

µ

  

   

 Therefore we have to seek solution S, I 
 
 

 

 of (7.4) with the following boundary 

conditions:  

( ) ( ) ( ) ( )S 0, I 0,S S, I I,
∧ ∧

−∞ = −∞ = ∞ = ∞ =
     

                                       (7.6) 

( ) ( ) ( ) ( )1S 1 , I 0,S S, I I,
∧ ∧

µ + β − γ
−∞ = − −∞ = ∞ = ∞ =

µ

                                             (7.7) 
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 Let us consider only (7.4) with (7.7) and the analysis of (7.4) with (7.6) is analogue. 

We linearize (7.4) about the point 1(1 ,0,0)µ + β − γ
−

µ
 then determine the eigenvalues A, which 

are the roots of 

( ) ( )

( )

1 1

2 1

2 2

μ +β-μ-γ k μ-μ -β+γ α-A             -                      0
c cμ c

det 0                                                                          1
μ(μ +α+γ)-k μ-μ -β+γ

                              
μd

A

c
d d
β

−

−
−

2

0

 A

 
 
 
  =
 
 − 
 

                                         (7.8) 

 Which are the roots of the characteristic polynomial,  

( )

( )( )

( ) ( ) ( )( )

3 2

1

2

1 2

2
2

1 1 2

2

( ) ,

μ+γ-μ -β
,

c
k-μ μ-μ -β+γ -μ(μ +α+γ)

,
μd

μ +β-μ-γ μ +β-μ-γ μ +α+γ β α μ
.

cμd

P A A fA gA h
with

cf
d

g

k
h

µ β

= + − +

= +

=

+ − −
=

                                                 (7.9) 

 Using the theory of cubic polynomials we can easily see that it’s possible to have 

three real roots. 

 To get stability to small linear perturbations we use the Routh-Hurwitz conditions for 

the roots P(A) to have negative real parts. This holds if   

( )

( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )( )

1

2
2

1 1 2

2
2

1 1 21 2 1

2 2 2

μ+γ-μ -β
>0,

c

μ +β-μ-γ μ +β-μ-γ μ +α+γ β α μ
>0

cμd

μ +β-μ-γ μ +β-μ-γ μ +α+γ β α μk-μ μ-μ -β+γ -μ(μ +α+γ) μ+γ-μ -β
. <0.

μd c cμd

c
d

k

kc
d

µ β

µ β

+

+ − −

+ − −   
+ −   

   

 (7.10) 

It is obvious that if the first and the second inequalities of (7.10) hold, the third 

equation of (7.10) does not hold unless 2d 0< . Therefore in order to have a traveling wave 
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front solution which approach the steady state (S, I ,T)
∧ ∧ ∧
  

 in an oscillatory manner as z →∞ , we 

require that 2d 0<  and (7.10) must hold, otherwise we have instability. 

Conclusion 
 In this paper, we considered stability of the epidemic model SIQS We showed that if 

0R <1, the disease-free equilibrium is locally asymptotically stable, if 0R =1, instable whereas 

if 0R >1 the endemic equilibrium is locally asymptotically stable. Then we resolve the system 

SIQS epidemic model  
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