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Abstract 
In the hydrofraturing process, the parameters such as Pressure in N/mm2, Temperature in ºC, 

Injection hole diameter in mm play a major role in determining the fracture length during the 

hydrofraturing process. A central composite rotatable design with three factors and three 

levels was chosen to minimize the number of experimental conditions. An empirical 

relationship was established to predict the fracture length(mm) of the hydrofraturing process 

by incorporating independently controllable hydrofraturing process parameters. Response 

surface methodology (RSM) was applied to optimize the process parameters to attain 

maximum fracture length (mm). Sensitivity analysis was also carried out to understand the 

impact of each process parameters on Fracture length. 

Keywords: Hydro fracturing, fracture length, optimization, response surface methodology, 

sensitivity analysis 

 
Introduction 
 The analysis of the hydro-mechanical behavior of rock masses remains an important 

topic in rock mechanics, due to it being a critical phenomenon in ongoing challenging issues 
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such as tunneling under high groundwater pressures, extraction of hydrocarbons from deep, 

pressurized petroleum reservoirs, and underground nuclear waste disposal. Despite 

continuing and extensive efforts, such analysis continues to be difficult. Hydro-mechanical 

response in a rock mass is identified as the interaction between the solid phase of the rock 

materials and any interstitial fluid (Rutqvist.J 2003). This technique involves pumping a fluid 

under pressure into a borehole. This pressurized fluid introduced into the borehole produces 

stress concentration in the surrounding rock causing the development of fractures due to micro 

mechanical effects (B.Guruprasad 2012). Because of the heterogeneity of the material 

properties, rock structure and in situ stress state, the hydraulic fracturing process is highly 

complex (Germanovich.L.N  1997). A common difficulty in the hydraulic fracturing process in 

the real time is in observation and measurement of the fractures that develop beneath of the 

earth. Generally, the induced fracture geometry is measured by cutting the sample after the 

test (Murdoch, L  1993) ( de Pater. C 1994) (Abass, H 1996) or by using an acoustic monitoring 

system (de Pater, C 1994)  (Groenenboom, J  2000).  

This method gives valuable results but limitations are there. The final results are 

observed by cutting the samples after the test. The resolution of the acoustic method is 

currently insufficient to capture details of the fracture propagation process. As a result, 

laboratory experiments on hydraulic fracturing in transparent materials have also been 

performed. These studies allowed the visualization in real time of the developing geometry of 

the fracture (Rummel F 1987) (Bunger A 2004) and the direction of fracture propagation 

(Hubbert M. K 1957) (Takada A 1990) (Bakala M 1997). Commonly used transparent 

geometrical analogues for fracturing are poly methyl methacrylate (PMMA, acrylic) 

(Rummel, F 1987) (Cooke M L 1996) . Since, the Fracture behavior is hard to predict because 

the relationship between stress and permeability is complex and highly dependent on 

pressure, temperature and Injection hole diameter. The resulting fractures can be used to 

analysis the basis of hydraulic fracture propagation in real time field applications, the 

developed empirical relationship can be effectively used to predict the Fracture length in 

millimeters of Hydro fracturing process.  

In this Research paper, It is well known that the input of hydrofraturing process 

parameters play a major role in determining the fracture length. As the process facts have not 

been disclosed so far, the selection of input parameters to find the fracture length (mm) is 

very difficult. A common difficulty in the hydraulic fracturing process in the real time is in 

observation and measurement of the fractures that develop beneath of the earth. Hence, the 

problem of getting optimized hydrofraturing process parameters to attain maximum fracture 
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length is attempted in this investigation. The Sensitivity analysis was also carried out to 

understand the impact of each process parameters on Fracture length during the 

hydrofraturing technique. 

Experimental work 
Fabricating the Experimental set up 

The experimental set up [Fig.1] consists of a container for storing the fluid, a 

commercially available feed pump to feed pressurized fluid to the inner casing pipe provided 

in the PMMA test sample. The 20 nos. of PMMA test samples were prepared for the test. The 

PMMA test sample has a length of 300mm and outside diameter of 150mm.  The inner casing 

pipe made up of stain less steel and inner diameter was 6 to 10 mm. The applied pressure can 

be varied manually by adjusting the two control valves provided in the experimental setup in 

the range of 4 to 8 N/mm2. Before starting the experiment, the required pressure applied in to 

casing pipe is to be ensured by adjusting the flow control valves. A separate by pass line is 

provided in the experimental setup for achieving the required pressure for the same.  A 555 

timer IC is provided for feed pump to control the pressurized fluid rate with respect to the 

time, say 5 sec to 15 mins. The PMMA test sample is placed over the heater for heating 

purpose in the range of 40 to 60ºC. The heater control unit is made up of Nichrome heater 

having a capacity of 400W. The Dimmersat is  0-2A, Single phase, open type and it is  

provided for varying the input to the heater and measurement of input is carried out by a 

voltmeter, ammeter. The Voltmeter – Digital range is 0 to 200V AC, The Ammeter digital 

range is  0 to 2A AC, The temperature indicator is  digital 0 to 199.9ºC. The electrical supply 

for the experimental setup is AC single phase, 230V earthed stabilized current. By varying 

the Dimmerstat, adjust the heat input at desired value for desired temperature on the PMMA 

sample. The commercially available thermocouples are embedded to the PMMA test sample 

for temperature measurement through a temperature gauge. The experimental table and Stand 

made up of MS square hollow pipe and angle. The pressure applied in the range of 4 to 8 

N/mm2 to the casing pipe, the temperature range for the study is 40ºC to 60ºC   and the casing 

pipe diameter is 6mm to 10mm (B.Guruprasad  2012). 
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From the literature, the predominant factors that have a greater influence on the 

Fracture rate of Hydro fracturing process had been identified. They were: (i) Pressure applied 

in N/mm2 (ii) Temperature in ºC (iii) Injection hole diameter in mm. Large numbers of trial 

experiments were conducted to identify the feasible testing conditions for obtaining the 

Fracture length of Hydro fracturing process. The following inferences were obtained: 

1. Based on the field trials the pressure applied is limited to 4 to 8 N/mm2. 

2. From the literature survey, the temperature and the injection hole diameter is 

limited to the range of  40 to 60 ºC and 6 to 10 mm respectively. 

3. Further the Maximum with stand temperature of the PMMA samples is to be less 

than 100ºC, hence the temperature range is fixed to 40 to 60 ºC only (B.Guruprasad 

2012)   

Developing the experimental design matrix 
Owing to a wide range of factors, the use of three factors and a central composite 

rotatable design matrix were chosen to minimize the number of experiments. A design matrix 

consisting of 20 sets of coded conditions (comprising a full replication three factorial of 8 

points, six corner points and six center points) was chosen in this investigation. Table 1 

represents the range of factors considered, and Table 2 shows the 20 sets of coded and actual 

values used to conduct the experiments. For the convenience of recording and processing 
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experimental data, the upper and lower levels of the factors were coded here as +1.682 and -

1.682 respectively. The coded values of any intermediate value could be calculated using the 

following relationship. 

Xi = 1:682[(2X –(Xmax – Xmin)] / [Xmax – Xmin]     (1) 

Where Xi is the required coded value of a variable X and X is any value of the 

variable from Xmin to Xmax, Xmin is the lower level of the variable, Xmax is the upper 

level of the variable. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



European Scientific Journal  February 2013 edition vol.9, No.6  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

245 
 

Developing an empirical relationship 

In the present investigation, to correlate experimental test parameters and the Fracture 

length in Hydrofraturing process, a second order quadratic model was developed. The 

response (Fracture length) is a function of pressure applied in N/mm2 (A), Temperature in ºC 

(B) and Injection hole diameter in mm (C) and it could be expressed as, 

Fracture length (FL) = f {A,B,C)    (2) 

            The empirical relationship must include the main and interaction effects of all factors 

and hence the selected polynomial is expressed as follows: 

Y = b0 + ∑ bi xi +  ∑ bii xi2 +  ∑ bij xi xj  (3) 

For three factors, the selected polynomial could be expressed as 

Fracture length (FL) =  b0 + b1(A) + b2(B) + 

b3(C)+b11(A2)+b22(B2)+b33(C3)+b12(AB)+b13(AC)+b23(BC)   (4)  (B.Guruprasad  2013) 

Where b0 is the average of responses (Fracture length) and b1, b2, b3, . . b11, b12, b13, . . 

. b22, b23, b33, are the coefficients that depend on their respective main and interaction factors, 

which were calculated using the expression given below 

Bi = ∑(Xi,Yi)/n  (5) 

Where ‘i’ varies from 1 to n, in which Xi is the corresponding coded value of a factor 

and Yi is the corresponding response output value (Fracture length) obtained from the 

experiment and ‘n’ is the total number of combination considered. All the coefficients were 

obtained applying central composite face centered design using the Design Expert statistical 

software package (Trial version 8.0.1). The significance of each coefficient was determined 

by Student’s t test and p values, which are listed in Table 3.  
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The values of “Prob>F” less than 0.0500 indicate that model terms are significant. In 

this case, A, B, C, AB, BC, A2, B2 and C2 are significant model terms. The values greater 

than 0.10 indicates that model terms are not significant. The results of multiple linear 

regression coefficients for the second-order response surface model are given in Table 4. The 

final empirical relationship was constructed using only these coefficients, and the developed 

final empirical relationship is given below: 

  Frature Length = {+3.90+0.71*A +0.61*B+0.54*C+0.34*A* B+0.26*B*C 

                   -0.18*A2-0.29*B2 -0.18*C2  }  mm              (6)   (B.Guruprasad 2013)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Analysis of Variance (ANOVA) technique was used to find the significant main 

and interaction factors. The results of second order response surface model fitting in the form 

of Analysis of Variance (ANOVA) are given in Table 3.The determination coefficient (r2) 

indicated the goodness of fit for the model. The Model F-value of 22.95 implies the model is 

significant. There is only a 0.01% chance that a "Model F-Value" this large could occur due 
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to noise. The values of "Prob > F" less than 0.0500 demonstrates a very high significance for 

the regression model. In this case A, B, C, AB, BC, A2, B2, C2 are significant model terms. 

The values greater than 0.1000 indicate the model terms are not significant. If there are many 

insignificant model terms (not counting those required to support hierarchy),  model 

reduction may improve your model. The goodness of fit of the model was checked by the 

determination coefficient (R2). The coefficient of determination (R2) was calculated to be 

0.9538 for response. This implies that 95.38% of experimental data confirms the 

compatibility with the data predicted by the model, and the model does not explain only 

4.62% of the total variations. The R2 value is always between 0 and 1, and its value indicates 

aptness of the model. For a good statistical model, R2 value should be close to 1.0. The 

adjusted R2 value reconstructs the expression with the significant terms. The value of the 

adjusted determination coefficient (Adj R2=0.9123) is also high to advocate for a high 

significance of the model. The Pred. R2 is 0.9081 that implies that the model could explain 

90% of the variability in predicting new observations. This is in reasonable agreement with 

the Adj R2 of 0.9123. The value of coefficient of variation is also low as 8.85% indicate that 

the deviations between experimental and predicted values are low. Adeq precision measures 

the signal to noise ratio. A ratio greater than 4 is desirable. In this investigation, the ratio is 

17.344, which indicates an adequate signal. This model can be used to navigate the design 

space. The normal probability of the Fracture length shown in Fig. 2 reveals the residuals 

were falling on the straight line, which meant that the errors were distributed normally. All of 

this indicated an excellent suitability of the regression model. Each of the observed values 

compared with the experimental values shown in Fig. 3. 
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Optimizing the Hydrofraturing process parameters 
The response surface methodology (RSM) was used to optimize the parameters in this 

study. RSM is a collection of mathematical and statistical techniques that are useful for 

designing a set of experiments, developing a mathematical model, analyzing for the optimum 

combination of input parameters, and expressing the values graphically (Khuri AI 1996). To 

obtain the influencing nature and optimized condition of the process on Hydrofraturing, the 

surface plots and contour plots which are the indications of possible independence of factors 

have been developed for the proposed empirical relation by considering two parameters in the 

middle level and two parameters in the x- and y-axes as shown in Fig.5. These response 

contours can help in the prediction of the response for any zone of the experimental domain 

(Tien CL 2006). The apex of the response plot shows the maximum achievable Fracture 

length (mm).  

A contour plot is produced to display the region of the optimal factor settings visually. 

For second-order responses, such a plot can be more complex compared to the simple series 

of parallel lines that can occur with first-order models. Once the stationary point is found, it is 

usually necessary to characterize the response surface in the immediate vicinity of the point. 

Characterization involves identifying whether the stationary point is a minimum response or 

maximum response or a saddle point. To classify this, it is most straightforward to examine it 

through a contour plot. Contour plots play a very important role in the study of a response 

surface. It is clear from Fig.5 that the Fracture length increases with the increase of applied 

pressure (N/mm2), Temperature (ºC) and Injection hole diameter (mm).  

By analyzing the response surfaces and contour plots in Fig 5, the maximum 

achievable fracture length (mm) value is found to be 580mm. The corresponding parameters 

that yielded this maximum value are Temperature 55ºC and Injection hole diameter 9mm. 

Contributions made by the process parameters on fracture length (mm) can be ranked (Phillip 

JR  1988 ) from their respective F ratio value which was seen in Table 3, provided the degrees 

of freedom are same for all the input parameters. The higher F ratio value implies that the 

respective term is more significant and vice versa. From the F ratio values, it can be 

concluded that pressure (N/mm2) is contributing more on fracture length (mm), and it is 

followed by temperature (ºC) and injection hole diameter (mm) for the range considered in 

this investigation. . A maximum Fracture length (mm) of 580 mm  obtained  under the 

maximum value of applied pressure 7 N/mm2 , Temperature 55ºC and Injection hole diameter 9 

mm  during the experimental work shown  in Fig 4. 
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Sensitivity Analysis 
Sensitivity analysis is an important tool to quantify the influence of input process 

parameters on the output response. This type of analysis can also be used to control the input 

parameters during hydrofraturing process as if they are more sensitive on output response. 

Mathematically, sensitivity of an objective function with respect to a design variable is the 

partial derivative of that function with respect to its variables. The sensitivity Equations 7,8,9 

represent the sensitivity on fracture length in mm for Pressure applied, Temperature and 

injection hole diameter respectively. 

∂(FL)/∂A = [(0.71)+(0.34*B)-[2*(0.18*A)]       (7) 

∂(FL)/∂B = [(0.61)+(0.34*A)+(0.26*C)-(2*(0.29*B))]       (8) 

∂(FL)/∂C = [(0.54)+(0.26*B)-[2*(0.18*C)]       (9) 

 Sensitivity is analyzed here using the partial derivatives of Equations 7 through 9. 

Namely, positive sensitivity values imply an increment in the objective function by a small 

change in design parameter, whereas negative values state the opposite (Karaoglu .S 2007). To 

evaluate sensitivities, each input parameter should be varied while keeping all other input 

parameters constant to see how the output parameters react to these variations. An output 

parameter would be considered very sensitive with respect to a certain input parameter if a 

large change of the output parameter value is observed. Sensitivities of process parameters on 

fracture length are presented in Table 5.  
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Figure 6 (a–c) shows the sensitivity of fracture length for the Pressure applied, 

Temperature and injection hole diameter respectively on fracture length. From Fig. 6(a) it can 

be seen that the variation of applied pressure causes large changes of Fracture length (mm) 

and also higher than that of other parameters. Considering the changes of Fracture length, the 

sensitivity of Hydrofraturing process parameters can be ranked as follows: the applied 

pressure during the process is more sensitive followed by Injection hole diameter and 

Temperature respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 
 As the Fracture length is controlled by the selection of process parameters, Fracture 

length has been evaluated under different processing conditions using three factors and a 

central composite rotatable design matrix. The sensitivity information could be useful to 

control the process parameters during hydrofraturing and the important results were 

concluded as below 
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 1.  A nonlinear empirical relationship was developed to predict the Fracture length 

(mm) as a mechanical property in hydrofraturing process incorporating parameters at 95% 

confidence level. 

 2. A maximum Fracture length (mm) of 581.335 mm could be attained under the 

maximum value of Pressure of 7N/mm2, Temperature of  55ºC and Injection hole diameter of 

9 mm.   

 3. Of the three process parameters investigated, the applied pressure (N/mm2) found 

to have greater influence on Fracture length (mm) followed by Temperature (ºC) and 

Injection hole diameter (mm). 

 4. From the sensitivity analysis, it is found that the applied pressure (N/mm2) is the 

most sensitive process parameter followed by Injection hole diameter (mm) and Temperature 

(ºC). 
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