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Abstract  

This research aims to introduce some of the main ideas of differential 

geometry. The research deals with the main concepts needed to understand 

this work. In this research properties of curves in 2R  are studied. The research 

is built on using the curvature of a curve in 2R to derive a parametric formula 

for the velocity and acceleration. Also the geometry of focal points has been 

discussed. Examples are built to support the aim of this research.  
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Introduction 

 The main content of this research is some differential geometry 

concerning curves in 2R . a brief description of curves in 2R is introduced. The 

geometry of curves in 2R  is described using Frenet formulas. The concept of 

a focal point is a base within this research, so definitions and theorems 

concerning focal points are included. As this research is about geometry of 

curves, the curvature of a curve in 2R  is studied in the field of focal points. 

 Differential geometry is a mathematical field which allows the study 

of geometrical concepts using calculus.Thus, calculus is used to explain how 

to extract planar curves out of their curvatures, an idea which supports the 

content of this research. Examples are built to support the aim of this research. 

Other geometrical concepts are included. 

 

Curves in 
2R  

Definition 1.1. A curveC  in 2R  is a differentiable function
2: Rf 


 where 

  is an (open) interval.  

Thus, if  t   is a parameter of f


 , t , then we write f


 as   

)(tf


))(),(( 21 tftf  

where
1f  and 

2f  are differentiable real valued functions defined on  .  
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We say that f


 is a parametrization of C  or C  is the trace of f


on  .  

Definition 1.2. A curve C  in R 2  with parametrization 2: Rf 


 is regular  

provided that 0)(


 tf for all t . If 0)( 1


 tf  for some 1t , then )( 1tf


 

is a singular point of C . 

Definition 1.3. Let 2: Rf 


 be a curve in R 2 . Let J:  be a 

differentiable real valued function where J  is also an interval. Then 
2:)( RJfw  


 is a reparametrization of f


 by  . 

Definition 1.4. The reparametrization w


 of f


 is orientation preserving if    

0  on J and orientation reversing if 0  on J . 

  Now we take  ba,  and define the arclength along C  by  

 
t

a

ufts )()(


du                                                  (1) 

where )(tf 


 is the norm of  )(tf 


, usually called the speed of f


. If C  is a 

regular curve, then 0)(  tf


 for all t  and so s  is a strictly increasing 

function of t  which has an inverse. That is, Equation (1) can be solved for s  

and then C  has a reparametrization by arclength. 

Proposition 1.5. Let w


 be an arclength reparametrization of f


. Then w


 has 

unit speed. 

Proof:  Observe that w


 is defined by ))(()( stfsw


 . Then differentiate with 

respect to s to get  

1
1




 f
fdt

fd

ds

dt

ds

dt

dt

fd

ds

wd


.   

Reparametrizing a regular curve by acrlength (also called unit speed 

reparametrization) simplifies calculations regarding geometry of curves. 

 

Curvature of a curve in 
2R  

Now take w


 as a unit speed curve, and then ww 


 . For,  

w


=1 01  wwww


. 

If  s


 is the unit tangent of w


at s , then .w


 
Also  

w 


. 

Definition 2.1. The curvature of a unit speed curve w


 is the function 

)()( ss 


 where 


 is the unit tangent of w


. 

Now let )(s


 be the unit normal of w


at s , 
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then 

                   
)()( ss 


)(s


                                                          (2) 

   The orthonormal set of the vectors  


,  is called Frenet frame.  So 


 can 

be written in terms of 


and


. In fact, if 


ba , 

then 

0


b  

and by Equation (2), 




a  . 

Hence  

                       
)()()( sss 


                                                       (3) 

Equations (2) and (3) are called Frenet formulas. 

  Now let f


 be an arbitrary regular curve with parameter t  and unit speed 

reparametrization )(sw


. Let )()( tft 


 . 

Theorem 2.2.  Frenet formulas of f


are  

                          
)()( tt 


)(t )(t


                                                  (4) 

                           )(t


)(t )(t )(t


                                                (5) 

Proof:   It is clear that there is a correspondence between points on f


 and w


 

in a way that  t  and s  such that  

  )()( swtf


 , )()( st wf



 , )()( st wf



  and 

)()( st wf
   . 

 Thus, Equation (2) implies that  

ds

d
t







)(
dt

ds
 )(s )(s



dt

ds
 )(t )(t )(t


. 

Also Equation (3) implies that 

 )(t


ds

d


dt

ds
)(s )(s


dt

ds
 )(t )(t )(tT


.    

Theorem 2.3. The velocity and acceleration vectors of f


 at t  are respectively  

        )()( ttf 


)(t


                                                         (6) 

                  )()( ttf  


)(t


)(t )(2 t )(t


                             (7)    

Proof:  The unit tangent of f


 at t is 
)(

)(
)(

tf

tf
t




 




 ,  

and so 

)()( tftf 


)()()( ttt 


 , 

and so Equation (6) is derived. 
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Now differentiate Equation (6) with respect to t , then use Equation (4) to get 

Equation (7).    

Theorem 2.4. Let f


 be an arbitrary regular curve. Then the curvature of f


 

is given by                                                  

                           

3

)(

)()(
)(

tf

tftf
t




 



                                                 (8) 

Proof:  By Equations (6) and (7), we have  

)( 2


vvff  


3 . 

Thus,   
33  


ff . 

 Hence Equation (8) follows.    

Definition 2.5.  The total curvature of a regular curve f


on   is  




 )()( tt  dt . 

The focal curve of a curve in 
2R  

Definition 3.1.  The focal curve of a regular curve  f


 is the curve  






1
fg . 

Similarly, the focal point with base )(tf


 is the point 

)(
)(

1
)()( t

t
tftg 




. 

Now let 
2

)()(Λ ptftp


   be the distance function whose domain is the 

curve  C   with parametrization f


. 

Theorem 3.2. The point p


is a focal point of C  with base )(tf


 iff 

0)(  tp
 and 0)(  tp

 . 

Proof: Recall that 
2

)()( ptftp


  ))(())(( ptfptf


 . 

Thus, 

)())((2)( tfptftp



  

And  )()(2)())((2)( tftftfptftp
 


 . 

If p


 is a focal point of C  with base )(tf


, then  )(
)(

1
)( t

t
tfp 




. Thus,                  
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)())(
)(

1
)()((2)( tft

t
tftftp







 

                                       

0)()(
)(

2



 tft

t




. 

Also                     )()(2)())(
)(

1
)()((2)( tftftft

t
tftftp

 





 

       

)()(2)()(
)(

2
tftftft

t





 

       0)().(2)().(2  tftftftf


. 

Conversely, the equation 0)(  tp
  implies that 


mptf )( . Now put 




mtfp )(  in the equation 0)(  tp
  to get  

0)()()(  tftftfm


, 

which is equivalent to                                                                                                                                                                                                                                                                                                                                

0)().()(  tftftfm


 

or 

0)()()()()(  tftftftftm


 . 

Thus,   
)(

1

t
m


 .So )(

)(

1
)( t

t
tfp 




,  i.e. p


 is a focal point of C  with 

base )(tf


.   

Example 3.3.   Let   ),()( 2tttf 


.  Then               

                  )2,1()( ttf 


                  and                )2,0()(  tf


. 

So            241)( ttf 


             and               2)()(  tftf


.  

Thus,                                                      

32 )41(

2
)(

t
t


 . 

By solving the equation  

)()41(
)41(

2

41

)2,1(

41

4
)2,0( 2

3222
tt

tt

t

t

t









 

for )(t


, we get 

241

)1,2(
)(

t

t
t







. 

Thus,                     
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)41

)1,2(

2

)41(
),()(

2

32
2

t

tt
tttg







 

                                       
)3

2

1
,4( 23 tt  . 

Now        
222 )()()( btattp   with ),( bap 


. So               

attbtp 24)42()( 3   

and 
21242)( tbtp   . 

Equating the last two equations to zero, we get 
2321 tb 

         and            
34ta  . 

Example 3.4.  Consider the curve defined by : 

)3sincos33cossinsin9,3sinsin33coscoscos9()( tttttttttttf 


Then                        

)cos,sin)(3cos89()( ttttf 


 

and 

            
)cos,sin(3sin24)sin,cos)(3cos89()( tttttttf 


. 

So                           

             
ttf 3cos89)( 



         
and        

2)3cos89()()( ttftf 


. 

Thus,                                       

t
t

3cos89

1
)(


  . 

By solving the equation  

)()3cos89(
3cos89

1
)cos,sin(3sin24)( 2 tt

t
ttttf 





 

for  )(t


, we get  )sin,cos()( ttt 


.   

Thus,

)3sincos33cossin9,3sinsin33coscos9()( tttttttttg 

. 

Let   ),( bap 


.  Then 
22 )3sincos33cossinsin9()3sinsin33coscoscos9()( btttttattttttp  

. So )cossin3sin3)(cos89(2)( tbtatttp  ,   
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)cossin3sin3(3sin48)sincos3cos9)(3cos89(2)( tbtatttbtatttp 

Equating the last two equations to zero, we get  

0cossin3sin3  tbtat  

and 

0sincos3cos9  tbtat . 

Solving the last two equations together, we get 

tttta 3sinsin33coscos9       and      ttttb 3sincos33cossin9  . 

 

Planar curves out of their curvatures 

Let  f


 be a planar curve with parameter s , the arclength. Let )(s  be the 

slope angle of the tangent line at )(sf


. Then the unit tangent of f


at s is 

defined by 

))(sin),((cos)( sss   . 

Now 
ds

d

ds

d
sk


)( .Thus, 

                                       


s

dssks
0

)()(                                                        (9) 

Now  if ))(),(()( sysxsf 


, then 

                                     


s

dsssx
0

)(cos)(                                                  (10) 

and 

                                    


s

dsssy
0

)(sin)(                                                  (11) 

Example 4.1. Let 
3

1
)( sk with )0,0()0( f


.  Then by Equation (9), 

                                   

sdssks
s

 
0 3

1
)()( . 

By Equation (10), we have  

1
3

1
sin3

3

1
cos)( cssdssx  . 

But 0)0( x , and so ssx
3

1
sin3)(  .   Also by Equation (11), we have 
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  2
3

1
cos3

3

1
sin)( cssdssy . 

But 0)0( y , and so .3
3

1
cos3)(  ssy

 
 

So )3
3

1
cos3,

3

1
sin3()(  sssf


, which is a circle of radius 3. 

Example 4.2. Let
1

1
)(

2 


s
sk with )0,0()0( f


.Then by Equation (9), 

sds
s

dssks
s s

 


 

0

1

0
2

tan
1

1
)()( . 

Now by Equation (10), we have  

                             
 dsssx )cos(tan)( 1

 

                                      

1
1

2
sinh

1

1
csds

s



 

. 

But 0)0( x , and so ssx 1sinh)(  . Also by Equation (11), we have 

                             
 dsssy )sin(tan)( 1

. 

                                      

 


 2
2

2
1

1
csds

s

s
. 

But 0)0( y , and so 11)( 2  ssy .So )11,(sinh)( 21   sssf


. 
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