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Abstract
This research aims to introduce some of the main ideas of differential
geometry. The research deals with the main concepts needed to understand

this work. In this research properties of curves in R? are studied. The research
is built on using the curvature of a curve in tho derive a parametric formula
for the velocity and acceleration- Also the geometry of focal points has been
discussed. Examples are built to support the aim of this research.
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Introduction
The main content of this research is some differential geometry

concerning curves in R*. a brief description of curves in R?is introduced. The

geometry of curves in R? is described using Frenet formulas. The concept of
a focal point is a base within this research, so definitions and theorems
concerning focal points are included. As this research is about geometry of

curves, the curvature of a curve in R* is studied in the field of focal points.

Differential geometry is a mathematical field which allows the study
of geometrical concepts using calculus.Thus, calculus is used to explain how
to extract planar curves out of their curvatures, an idea which supports the
content of this research. Examples are built to support the aim of this research.
Other geometrical concepts are included.

Curves in R?

Definition 1.1. A curveC in R? is a differentiable function f : 1 — R? where
I is an (open) interval.

Thus, if t isaparameter of f , tel, then we write f as

f(t) = (1,00, f, (1)

where f, and f, are differentiable real valued functions defined on 1.
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We say that f is a parametrization of C or C is the trace of fon I.
Definition 1.2. A curve C in R? with parametrization f : 1 — R? is regular
provided that f'(t) =Oforall tel.If f'(t,)=0 forsome t, eI, then f(t;)
is a singular point of C.

Definition 1.3. Let f:I1—R? be a curve in R?. Let §:J —1 be a
differentiable real valued function where J is also an interval. Then
W= f(5):J — R? is a reparametrization of f by §.

Definition 1.4. The reparametrizationw of f is orientation preserving if

6’ >0 on Jand orientation reversing if 6’ <0 on J.
Now we take I =[a,b] and define the arclength along C by

s®) = ]| F')] au "

where‘ f"(t)” is the norm of f'(t), usually called the speed of f.If C isa

regular curve, then‘

F’(t)H >0 forall tel and so s is a strictly increasing
function of t which has an inverse. That is, Equation (1) can be solved for s
and then C has a reparametrization by arclength.

Proposition 1.5. Let W be an arclength reparametrization of f . Then W has
unit speed.

Proof: Observe that w is defined by w(s) = f (t(s)). Then differentiate with
respect to sto get

dw| _|df de| _|dtfldf| 1
ds| |dtds| [ds|dt| [f’
Reparametrizing a regular curve by acrlength (also called unit speed
reparametrization) simplifies calculations regarding geometry of curves.

=10

Curvature of a curve in R?
Now take W as a unit speed curve, and then W' 1L W' . For,

W|=1 =>W -W=1=W- -W"=0.

If T(s) is the unit tangent of wats, then T =W’

Also

T =w".

Definition 2.1. The curvature of a unit speed curve W is the function
x(s) = [T'(s)| where T is the unit tangent of w.

Now let N(s) be the unit normal of wats,
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then
T'(s) = x(s) N(s) 2
The orthonormal set of the vectors {T,N} is called Frenet frame. So N can

be written in terms of Tand N . In fact, if N’ = aT +bN,
then
b=N'"-N=0
and by Equation (2),
a=N-T=-N-T'=-N-:N = —
Hence
N'(s) =—x(s)T(s) ©)

Equations (2) and (3) are called Frenet formulas.

Now let f be an arbitrary regular curve with parameter t and unit speed

reparametrization W(s). Let v(t) =

Theorem 2.2. Frenet formulas of f are
T'(t) = (1) v(t) N() @
N'(t) = - x(t) v(t) T(t) (5)
Proof: Itis clear that there is a correspondence between pointson f and w
inaway that 3t and s such that
f(t) =w(s), T (t) =T,(s), N (t)=N,(s) and
Ko (1) =x,(s).
Thus, Equation (2) implies that

7= % _x(9) N9 & =x0 v NO.
Also Equatlon (3) implies that
N =28 =) T B =00 T 0
Theorem 2.3. The velocity and acceleration vectors of f at t are respectively
') =v(t) T(t) (6)
f(t) =v/(t) T(t) +x(t) v*(t) N(t) (7)
f'(t)

Proof: The unit tangent of f at tis T(t) = —

and so
) =| /)] Tt =v(O)TE),

and so Equation (6) is derived.
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Now differentiate Equation (6) with respect to t, then use Equation (4) to get
Equation (7). ¢

Theorem 2.4. Let f be an arbitrary regular curve. Then the curvature of f
is given by

[F/)= )

[Fof
Proof: By Equations (6) and (7), we have
f'x f"=vIx(VT+&’N) = xv*TxN |
Thus,
‘ f'x "= KV3HT><NH =V,
Hence Equation (8) follows. ¢
Definition 2.5. The total curvature of a regular curve fon I is
K = [v)x( dt.
I

The focal curve of a curve in R?
Definition 3.1. The focal curve of a regular curve f isthe curve

x(t) = (8)

g=f+£N.

K

Similarly, the focal point with base f(t) is the point
1

g(t) = F(t)+——N(t).

gt)=f(@ s (t)

Now let A (t) = H f(t)— [3”2 be the distance function whose domain is the
curve C with parametrization f .

Theorem 3.2. The point p is a focal point of C with base f (t) iff

A’ (t) =0and A (t) =0.

Proof: Recall that A, (t) = | F(t) - p| = (F)-p)-(F®)-p).

Thus,

A, ®)=2(ft)-p)- f'(t)

And  Aj(t)=2(f(t)-p)- F'@)+2F'(t)- F'1).

_ 7 1 _
If p isafocal pointof C withbase f(t),then P = f(t)+mN(t) . Thus,
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Ay®) =2(f(1) - f(1) —%N(t))‘ f'(t)

-2 _ - B
=EN(t)-f t)=0.
Also AL =2 - T —$N(t))- fr)+2F'@)- ()
2 N/ ] ] ra
:mN(t)-f ®)+2F@)- F'(t)

- 2F@).F @)+ 2F(0).F(t)=0.
Conversely, the equation A’;(t) =0 implies that f(t)— p=mN. Now put
p= f(t)-mN inthe equation A (t) =0 to get
mN - F(@)+ F'(t)- F'(t) = 0,
which is equivalent to
—mN’- f/(t)+ f'(t).f'(t)=0
or
mx(t) F'(t)- f'(t)+ f'(t)- f'(t)=0.

Thus, m= —L.So p= F(t)+%N(t), i.e. p isafocal point of C with
K

x(t)
base f(t). ¢
Example 3.3. Let f(t)=(t,t?). Then
f'(t) = (1,2t and f"(t)=(0,2).
So f/(t)] = v1+4t® and [F@xfr@)|=2.
Thus,
k(t) = #
(1+4t2)®
By solving the equation
02)- &2 2 a+4)N()

+
V1447 1+4t°  (J1+4t%)°
for N(t), we get

N (_2t!1)
N(t) = —==.
0 V1+4t?

Thus,
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_ o (W1+4t7)° (=2t))
t) = (t,t
g =(@t)+ > 4t

:(—4t3,%+3t2),

Now A, (t)=(t-a)’+(t*-b)*with P=(a,b).So
A (1) = (2-4b)t+4t° —2a

and

A% (t)=2-4b+12t%,

Equating the last two equations to zero, we get
b=1/2+3t’ and a=—4t%

Example 3.4. Consider the curve defined by :

f (t) = (9cost +costcos3t + 3sintsin3t,9sint +sint cos3t —3costsin3t)
Then

f'(t) = (9 —8cos3t)(—sint, cost)

and

f"(t) = (9 —8cos3t)(—cost,—sint) + 24sin3t(-sint, cost) .
So

|F'@)]=9-8cos3t  and \ fr )= f ”(t)H — (9—8c0s3t)?.
Thus,

1
ty=— ——

w(t) 9-8cos3t

By solving the equation

f"(t) = 24sin3t(-sint, cost) + 1 (9 —8c0s3t)*N(t)
9—-8cos3t

for N(t), we get N(t) = (—cost,—sint).
Thus,
g(t) = (9costcos3t + 3sintsin3t,9sint cos3t —3costsin3t)

i_et p=(a,b). Then
A, (t) =(9cost +cost cos3t +3sintsin3t —a) +(9sint +sint cos3t — 3costsin3t —b)?
.So Ay (t) =2(9—8cost)(-3sin3t +asint —bcost),
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A% (t) = 2(9-8cos3t)(-9cos3t +acost +bsint) + 48sin3t(-3sin3t +asint —bcost)

Equating the last two equations to zero, we get

—3sin3t +asint—bcost =0

and

—9cos3t +acost +bsint =0.

Solving the last two equations together, we get

a=9costcos3t +3sintsin3t and b=09sintcos3t —3costsin3t.

Planar curves out of their curvatures
Let f be a planar curve with parameter s, the arclength. Let ¢(s) be the

slope angle of the tangent line at f(s). Then the unit tangent of f ats s

defined by
7(s) = (cosg(s),sing(s)).
Now Kk(s) = dr :%.Thus,
ds| ds
#(s) = (J) k(s)ds 9
Now if T(s) = (x(s), y(s)), then
X(s) = ?cos¢(s)ds (10)
0
and
y(s) = [sing(s)ds (11)
0

Example 4.1. Let k(s) = %with f(0) = (0,0). Then by Equation (9),

#(5) = [k(s)ds = 35
0 3

By Equation (10), we have

X(s) = jcos%sds = 35in%s +C,.

.1
Butx(0) =0, and so X(S) = 3S|n§5 . Also by Equation (11), we have
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.1 1
y(s) :j'3|n§sds:—?>cos§s+c2 ,
1
But y(0) =0, and so Y(S) = —3cos§s + 3.

— 1 1
so f(s)= (3S|n§S,—3COS§3 +3) , which is a circle of radius 3.

1 _
Example 4.2. LetK(S) = ;2 +1with f (0) = (0,0) .Then by Equation (9),

s s 1 _1

#(s) = [k(s)ds = | >—ds=tan""s,
0 0s° +1

Now by Equation (10), we have

X(s) = Ic:os('[an‘l s)ds
_J' 1
Vs?+1
But x(0) = 0, and so X(s) = sinh™" s . Also by Equation (11), we have
y(s) = J‘sin(tan‘1 s)ds.
— [ _ds=vs?+l4c,.
Vs +1
But y(0) =0, and so Y(S) =vs® +1—-1.S0 f(s) = (sinh*s,v/s? +1-1),

ds=sinh*s+c,.
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