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Abstract 

 The paper presents an analysis of the thermal regime for a double sided linear 

induction motor with ring windings and plate armature. The motor can operate in an 

oscillating drive system with fast response and low distance movement or for small and 

medium movement application. A thermal model is realized for the linear induction motor 

and it is compared with experimental data regarding the thermal aspects.  
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Introduction 

 The linear induction motors are known as solutions for transport vehicles such as 

urban vehicles or trains, or for linear drives where they can replace the rotary electric 

machines, hydraulic or pneumatic equipments with linear movement. Thermal regime of the 

linear induction motor is an important factor during operation because the overheating can 

affect the structure, the winding insulation and finally, the drive operation. The thermal 

regime depends on the supply system characteristics, on the driven kinematics, as well as on 

the linear motor structure and on its cooling system. The need for an analysis of the thermal 

processes can arise when designing a linear motor (Sarapulov & Goman 2009) but also for 

the supplying system and for the protection of the system (Plesca 2010), (Plesca 2011).   

 In some situations, to improve the thermal behavior, an insulation layer is used. By 

placing the insulation layer between the primary part of the machine, the temperature 

difference and temperature fluctuation in the machine due to varying motor load are reduced 

(Eun 2003). The linear induction motor can be used in the automotive suspension system 

(Hyniova 2012), where a three-phase linear motor is used, with a limitation for the maximum 

temperature of 100 oC. The main advantage of the solution is the possibility to generate 

desired forces acting between the unsprung (wheel) and sprung (one-quarter of the car body 
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mass) masses of the car, providing good insulation of the car sprung mass from the road 

surface roughness and load disturbances.  

 An original application of the linear motor can be the wave-energy conversion, as a 

part of the effort for the renewable energy development (Danson 2008). Moreover, double-

sided designs increase the air-gap of the machine, linking more flux than single-sided 

machines.  

 Some systems must have high performance such as high precision and high speed. It 

is therefore important to analyze, design and control linear motor used widely as an actuator 

in the precision stage. For a double-sided linear motor with yoke and multi-segmented array, 

the coating on the coil cannot stand the temperature more than 120 oC (Lee 2006).  

 Thermal analyses can be conducted by means of analytical or numerical methods. The 

analytical method based on lumped parameters is faster, but its accuracy depends on the level 

of refinement of the thermal network and on the knowledge of the heat transfer coefficients 

(Amoros 2011). The objective is to check that, within the specified conditions of operation, 

the temperature rise in the different parts of the motor does not surpass the limit value of the 

chosen insulation class.  

 In order to avoid the complex conjugate problem, convection heat transfer within 

fluid flow and conduction within solid parts were modeled and solved separately. As an 

alternative approach, a simple one-dimensional thermal resistance model was introduced and 

compared with the finite element analysis.. The influences of some factors, such as thermal 

conductivity of the insulation sheet, thermal contact between the coil assembly and the 

mounting plate, and air-cooling or water-cooling were examined through the analysis (Jang 

2003).  

 Linear motors can be used as efficient tool to achieve the high speed and accuracy. 

However, a high speed feed drive system with linear motors, in turn, can generate heat 

problems. Also, frictional heat is produced at the ball or roller bearing of the linear motor 

block when driven at high speed. It can affect the thermal deformation of the linear scale as 

well as that of the machine tool structure. The thermal deformation characteristics can be 

identified through measuring the thermal error caused from thermal deformation of the linear 

scale and the machine tool structure (Kim 2004).  

 Another possible application of the linear induction motor is to drive the pantograph 

collecting system for the electric vehicles, like trains and tramways (Nituca 2003). In this 

case the motor assures the contact force for the contact between the catenary and the contact 

line. Moreover, its control assures a better contact and improve the current collection process 
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and reduces the wear of the pantograph and of the contact line and reduce the detachments of 

the pantograph skate from the wire (Nituca 2007).   

 The end effects are the particular sensitive difficulty to model the linear drives. The 

3D magnetic and thermal models are achieved taking into account the end effects and the 

metaphysical aspects of a linear motor studied as a braking system with different 

displacement velocities. The startup thrust force is studied with the coupling between the 

magnetic and thermal models (Jinlin 2010).  

  A linear motor is a direct drive system which is a heat source and placed near to the 

working area. Therefore, this thermal effect characteristic study is conducted here to find out 

the effect of heat that is transferred and dissipated around the working area, causing 

unwanted deformation. The surface area joining the linear motor coil to the application 

carriage is large. It will be inaccurate to assume a constant temperature or heat flux through 

the entire surface. The temperature of the surface is different for different location and time 

(Chow, J.H. 2010).  

The construction of the linear induction motor with ring windings  
 The linear motor considered (Fig. 1) is a three-phase one, double sided, with a vertical 

plate mobile armature (1) from copper. On the two inductors (2a and 2b), there are placed the 

ring windings in 24 slots, yielding the coils (3). The air gap δ is to be found on the both sides 

of the plate armature, the total air gap being 2∙δ. The mobile armature has an oscillating 

movement (4) on a distance of about 0÷250 mm.   

 
Fig. 1. The double sided linear induction motor. 

  
For the small oscillating movements (less than 100 mm), the plate armature will be 

almost all the time in the same relative position with respect to the inductors, which will give 

a higher heating and consequently a modification of the machine’s parameters. In fact, such 

regime may yield to an overheating of the windings and of the armature plate which can 

result in insulation melting, short-circuit of the winding, the armature deformation and thus to 

the damage of the motor. This transient regime can affect the protection system as fuses or 

circuit breakers (Plesca 2010).   



European Scientific Journal  March 2013 edition vol.9, No.9  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
 

41 
 

 Determining the temperature distribution, highlights the parameters that govern the 

critical zones and possibly optimize the cooling system to meet the constraints and standards 

imposed. (Bertin, Y. - 2010).  Therefore, the estimation of the temperature of the windings 

can be made by indirect method (using a mathematical relationship (Valcov 2009, Livint & 

Stan 2001)), or by direct method (using specific devices for the temperature measurement and 

monitoring (Livint & Stan 2001, Scintee & Plesca 2009). Finite element method is also used 

for heat transfer analysis in three-phase linear motor (Huang 2010) and thermal resistance is 

studied for different applications of the linear motor, as in (Jang 2003).   

The heating differential equation for the linear motor 
 The linear motors are more difficult to study from the thermal point of view in 

comparison with the rotary motors because of their specific construction and the related 

electromagnetic process. The thermal estimations need to evaluate the losses in the windings 

and in conducting materials. An analysis can be made, for a first estimation, in analogy with 

the rotary machines starting from the thermal equation:  

θCddtθAQdt +=         (1) 

 Thus, the heat Q released into the machine in a dt time is equal to the heat released by 

the machine for a difference of temperature θ between the machine and the environment 

(Aθdt), plus the heat absorbed by the machine (Cdθ) to increase its temperature by θ degrees. 

The equation (1) can be rewritten as: 

( ) θθ CddtAQ =− ,       (2) 

 or  

θ
θ
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−

=
 ;        (2’) 

 where:  

- C is the thermal capacity of the machine;  

- A is the heat transfer capacity of the machine. 

 The integration of the equation (2’) will give the variation relationship of the machine 

heating (Botan 1970):  
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 where θ0 is the initial temperature of the machine; if it is equal to the environment 

temperature, it can be considered as the temperature axis origin. The relation (3) shows the 

maximum temperature:   
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A
Q

θ =max              (4) 

 The ratio C/A is a constant for a given machine and represents the time constant of the 

machine heating or the temperature delay (thermal inertia) of the machine: 

A
CT =θ             (5) 

 As a value, the heating time constant Tθ is the necessary time for the machine to reach 

the θ temperature by releasing the heat in the environment, where:   

        max632.0= θθ            (6) 

 The time constant of the heating Tθ is obtained as in Fig. 2. The intersection between 

the tangent and the temperature θmax gives the time constant Tθ.  

             
Fig. 2. The heating curve and the cooling curve of the machine. 

  
It is to notice that if the temperature of the motor is equal to the temperature of the 

environment, the relation (3) becomes:   


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e
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 If the motor is stopped and the power is switched off, the motor starts to cool and the 

variation of the temperature is given by the equation:  

'

max
θθθ T
t

e
−

=       (8) 

 where '
θT  is the time constant of the cooling, which is usually different from the time 

constant of the heating (Fig. 2).  
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Thermal modelling of the double sided linear induction motor   
 For a better understanding of the thermal aspects of the linear motor, it was realized a 

model and simulations of the thermal regime. Fig. 3 presents the geometrical model of the 

linear induction motor with the armature plate of copper and the two modules of the 

inductors. The inductors are symmetrically on the plate with an air gap of 1 mm. Fig. 3 

presents a detail for a single inductor, with the notations: 1-the mobile plate armature; 2-

inductors; 3-windings; 4-yokes. The data used for the thermal simulation are:  

- for the mobile plate armature (from copper): material density: 8900 kg/m3, specific 

heat: 385 J/kggrd.C, thermal conductivity: 385 W/mgrd.C;  

- for the yokes (iron): density: 7190 kg/m3, specific heat (thermal capacity): 420.27 

J/kggrd.C, heat (thermal) conductivity: 52.028 W/mgrd.C; 

- For the insulation: density: 1400 kg/m3, specific heat (thermal capacity): 137 

J/kggrd.C, heat (thermal) conductivity: 1.25 W/mgrd.C. 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Geometrical model of the linear induction motor: 1-mobile plate armature; 2- inductors; 3-

windings; 4- yoke.  
 

 Figure 4 presents the thermal distribution for the linear induction motor for a 20 oC 

ambient temperature. It is to see that the maximum temperature is in the middle of the 

inductors and it is about 92.4 oC, very close to the experimental measurements, as presented 

below.   
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Fig. 4 Thermal distribution for the double sided linear induction motor. 

 

 Figure 5 presents a section through the linear motor to see the plate armature and only 

one inductor. The maximum temperatures are in the middle on the copper windings, with 

values of about 90 oC, and on the lateral windings the temperature is about 60 ÷ 62 oC. On the 

armature plate the distribution of the temperatures is from about 85 oC in the middle to about  

30 oC on the edges.  

 
Fig. 5. Thermal distribution of the linear induction motor - section through motor. 

 
The thermal load was distributed uniformly in all the volume of every copper 

winding. On the lateral areas the temperature is lower because the windings are in contact 

with the lateral pieces of aluminum, which have a coefficient of convection of 19.75 W/m oC. 

For the inductor the coefficient is 14.2 W/m oC and for the isolation it was considered 12.5 

W/m oC.  
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Experimental thermal tests of the linear induction motor  
 The estimation of the temperature increase of the windings and of the other parts of 

the motor is made with a locked armature. The inductor is supplied, for the first tests, at rated 

voltage and rated frequency from a three-phase symmetrical supply system (by a three-phase 

autotransformer). For the second test the motor is supplied by an alternative voltage variator. 

The supply schema is given in figure 6.  

 The temperature is measured with an infrared thermometer CA876 with laser aiming 

in the range -20°C...+550°C, and 1°C acuity and a precision of about ± 2%. The choice of 

sensor location is not simple. It depends on access to areas of the machine during its 

construction (Glises 2010).  

 
Fig. 6. The supply schema of the linear induction motor for the thermal regime analysis 

 
The temperature measurement points on the linear motor are presented in figure 7. On 

the mobile armature plate (1) the temperatures were measured in points θ1 and θ2 at the edges 

of the plate and between the inductors 2a and 2b. For the coils the temperature is measured in 

point θ3 at the 13th coil of the inductor 2a and in point θ4 on the 14th coil of the inductor 2b 

because these are the coils with maximum temperatures. For the yokes 3a and 3b, the 

temperature is measured at the points θ5, θ6, θ7, θ8. All of these will give a large view over the 

variation of the temperature in the motor.  
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Fig. 7. The measurement points for the temperature of the linear induction motor. 

 
 The measured temperatures with the motor supplied from an autotransformer are 

presented in Table 1. For a current of I = 1.25 A and voltage of 275 V, the force is F = 40 N. 

The motor is supplied for 70 minutes and the temperature is measured every 10 minutes. The 

higher temperatures are measured on the two inductors, and a medium value is measured in 

yokes and low temperatures are measured on the armature plate extremities.  
Table 1. Measured temperatures in different point of the motor for a force of 40 N 

Time 

[Min] 

θ armature [Co ] θ inductors [Co] θ yoke [Co] 

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 

0 23 23 23 23 23 23 23 23 

10 26 26 36 38 31 30 28 31 

20 27 27 41 44 37 36 33 38 

30 27.5 27.7 45 49 40 41 35 43 

40 28 28.2 51 54 43 43 37 44 

50 28.5 30 55 58 45 47 40 47 

60 29 30.5 56 60 48 50 44 51 

70 29.5 31 61.5 63 53 54 47 56 

 
 Because the maximum temperatures are for the inductor coils, it is necessary to 

estimate the time constant of the heating Tθ for the machine, using the relations (3-6). We 

obtain Tθ = 850 [s], the maximum estimated temperature being θmax = 60 oC. With these data 

and using the relation (3), we obtain the heating curve of the linear motor (Fig. 8 where the 

curve 1 is the experimental one and the curve 2 is determined by the relation (3)).  
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Fig. 8. The heating curves of the inductor number 2 with autotransformer supply.  

 
 The curve 2 describes with a good precision the experimental curve only for the 

beginning and for the end of the curve, which is explained by the incorrect value of the time 

constant of the heating. By some correction it is obtained the curve (3) which is more precise 

for the entire curve, the time constant of the heating being of Tθ = 1250 [s], corresponding for 

a 42 oC temperature, that is 0.7 from the maximum temperature. Thus, the relation (6) can be 

revised as  θ = 0.7∙θmax.  

 Similar analyses were performed with the linear motor supplied by an alternative 

voltage variator (Table 2). The situation is different from the above case because of the 

current harmonics which could lead to higher heating of the semiconductor devices (Plesca 

2011, chapter in book).   

 The maximum temperatures are also for the inductor coils, the time constant of the 

heating being of Tθ = 870 [s], for an estimated maximum temperature θmax = 66 oC. Figure 9 

presents the experimental variation heating curve 1 and the estimated curve 2 (using the 

relation (3)).  
Table 2. Measured temperatures at different points of the motor supplied by a voltage variator 

Time 
[Min] 

θ armature [Co ] θ inductors [Co] θ yoke [Co] 
θ1  θ2 θ3 θ4 θ5 θ6 θ7 θ8 

   0 25 25 25 25 25 25 25 25 
10 27 27 36 40 31 30 28 31 
20 27.5 27.5 41 45 37 37 33 36 
30 27.8 27.7 45 49.5 40 41 35 42 
40 28 28.1 51 54.5 42 43 37 44 
50 28.5 29 55 58 45 47 40 47 
60 29 39 56 60 49 50 45 51 
70 29 31 61 63 53 54 48 55 
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Fig. 9. The heating curves of the inductor number 2 with voltage variator supply.  

 
 As above, there are necessary corrections which give the heating curve 3, the time 

constant of the heating being of T ( = 1550 [s], corresponding to a 47 oC temperature, that is 

0.711 from the maximum temperature. Thus, the expression (6) can be revised as:  

 θ = 0.711∙θmax      (9) 

Conclusion 
 A study of the heating phenomena for a double sided linear induction motor with 

armature plate and ring windings is presented. There were estimated the relationships for the 

temperature variation in the maximum temperature points. It was realized a correction of the 

graphical estimation of the time constant of the heating which allows a more precise heating 

curve estimation for different situations and different points.  

 A thermal model for the linear induction motor is realized in order to estimate the 

heating area on the motor. From the study it results that the theoretical characteristics of the 

motor heating overlap in the experimental characteristics.  
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