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Abstract 
 Simulation of streamflow is one of important factors in water 

utilization. In this paper, a linear statistical model i.e. Seasonal 

Autoregressive Integrated Moving Average model (SARIMA) is applied for 

modeling streamflow data of Astore River (1974 – 2010). On the basis of 

minimum Akaike Information Criteria Corrected (AICc) and Bayesian 

Information Criteria (BIC) values, the best model from different model 

structures has been identified. For testing period (2004-2010), the prediction 

accuracy of selected SARIMA model in comparison of auto regressive (AR) 

is evaluated on basis of root mean square error (RMSE), the mean absolute 

error (MAE) and coefficient of determination (R2). The results show that 

SARIMA performed better than AR model and can be used in streamflow 

forecasting at the study site. 
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Introduction 

 Streamflow forecasting is a key step in planning of water projects, 

irrigation systems, hydropower system and optimize utilization of water 

resources (Zhang et al., 2011). Due to continuous increase of population 

growth, industrial uses and irrigation needs, the streamflow forecasting has 

received great attentions of researchers for operational River management 

(Xu et al., 2014). The importance of water measurement compelled 
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researchers to apply various types of forecasting models to estimate and 

forecast streamflow. These models consist of rainfall-runoff model, lumped 

conceptual models, black box models and stochastic models (Bahremand and 

De Smedt, 2010; Tayyab et al., 2016; Tayyab et al., 2015; Tingsanchali and 

Gautam, 2000; Wang, 2006). 

 Seasonal autoregressive integrated moving average (SARIMA) 

models have been used by various researchers for modeling different 

variables in hydrology. Rabenja et al. (2009) applied both stochastic models 

to forecast monthly precipitation and discharge of Namorona River in 

Madagascar. They concluded that the SARIMA model is more preferable for 

runoff forecast. Otok (2009) forecasted runoff data in Indonesia by applying 

SARIMA model in comparison of autoregressive integrated moving average 

(ARIMA) and transfer function model (TFM) statistical models. They 

suggested that SARIMA stochastic models perform better than ARIMA 

models and TFM in forecasting streamflow. Mirzavand and Ghazavi (2015) 

applied SARIMA and AR models to forecast groundwater levels in semi-arid 

environment. He compared the results of both models with ARIMA model. 

Psilovikos and Elhag (2013) used the Seasonal ARIMA model in 

comparison of non-seasonal ARIMA model for forecasting daily 

evapotranspiration over Nile delta region. Valipour (2015) in another 

research used SARIMA and ARIMA stochastic models to analyze the 

streamflow in different districts of United States. He used the annual flow 

data of Rivers and concluded that SARIMA models show better performance 

than ARIMA models. Dastorani et al. (2016) applied AR model in 

comparison of ARIMA, moving average (MA) and auto regressive moving 

average (ARMA) models for predicting monthly rainfall. Ghanbarpour et al. 

(2010) applied the two stochastic models by analysing karstic river flow in 

the Sansoorakh karst drainage basin. His study results showed that SARIMA 

models perform better than deseasonalized ARIMA models  

 

Methodology 

 A stochastic model explains the probability structure of sequences of 

observation. Box and Jenkins developed ARIMA stochastic models that 

describe a wide class of models forecasting a univariate time series that can 

be made stationary by applying transformations – mainly differences for 

Trend and Seasonality, and power function to regulate the variance (Box and 

Jenkins, 1970; Box and Jenkins, 1976; Box et al., 1967) The model, word 

“ARIMA” consists of three terms i.e. i) AR ii) I and iii) MA terms. Lags of 

differenced time series in the forecasting equations are called 

“autoregressive(AR)” term, whereas lags of the forecasted errors are called 

“moving average (MA)” term and the time series which requires 
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differenceation to become stationary should be “Integrated (I)” (Ghafoor and 

Hanif, 2005). 

 

Seasonal ARIMA Model 

 Seasonal ARIMA model, which are commonly known as seasonal 

autoregressive integrated moving average (SARIMA) models are used to 

deal with seasonality (Reinsel et al., 1994). the SARIMA model can be 

explained as ARIMA(p, d, q)(P, D, Q)L, where “p” represents the non 

seasonal autoregressive term, ”q” represents the non seasonal moving 

average term, “d” represents the non seasonal differencing terms and (P, D, 

Q)L represents the seasonal auto regressive, seasonal moving average and 

seasonal difference terms respectively. The general form of Seasonal 

ARIMA (p,d,q)(P,D,Q)L model can be written as follows(Shunway and 

Stoffer 2001) by using the backshift operator (Bn(St)= St-n): 

ΦNAR (B) ΦSAR(BL)(1-B)d (1- BL) D St = θNMA(B) θSMA(BL) et  

  (1) 

Whereas the ΦNAR(B), ΦSAR(BL), θNMA(B)  and θSMA(BL)  parameters can be 

expressed in detailed form as: 

ΦNAR(B) = 1- Φ1NAR(B) - … - ΦpNAR(Bp)      

  (2) 

ΦSAR(BL) = 1- Φ1SAR(BL)- … - ΦpSAR(BpL)      

 (3) 

θNMA(B)  = 1- θ1NMA(B)  - … - θqNMA(Bq)       

 (4) 

θSMA(BL) = 1- θ1SMA(BL) - … - ΦqSAR(BqL)      

 (5) 

 Where L= sesonality lag, ΦNAR = non seasonal autoregressive 

parameter, ΦSAR = seasonal autoregressive parameter, θNMA = non seasonal 

moving average parameter, θSMA  = seasonal moving average parameter, D = 

seasonal difference, d = non seasonal difference, St = Streamflow at time t. 

 

AR Model 

 ARs models started to predict a time series in the start of 19th century 

when Yule introduced first AR model to predict wolfer’s sunspot data in 

1927. The auto regressive (AR) of order p can be given as; 

St= Φ1St-1+ Φ2St-2 + Φ3St-3 + ……..+ ΦpSt-p +  et    

  (6) 

 Where Φ1,Φ2,Φ3 and Φp are the coefficient of AR model , et indicates 

the error term at time period t and St refers the value of forecasted 

streamflow at time period t. 

 

The Box –Jenkins Stochastic models building methodology 
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 Box & Jenkins linear stochastic models building is based on three 

steps i.e. Identification, Estimation and Diagnostic check (Box and Jenkins 

1976; (Box and Jenkins, 1976; Mishra and Desai, 2005; Modarres, 2007).  

Identification stage involves two steps. In the first step, time series is 

analyzed for stationarity in “mean” and “variance”. If the variance is not 

stable, it can be made stable by power transformation i.e. log transformation 

for lambda=0. Appropriate seasonal or non seasonal differencing of the 

series and sometimes both seasonal and non seasonal differencing is 

performed to obtain stationarity and normality. Second step of the 

identification require the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) after applying seasonal and non seasonal 

difference. The ACF is a useful tool to measure the relation of earlier value 

on later values where PACF measures the amount of correlation between a 

variable and a lag of itself. The information obtained from both correlation 

functions is used to determine an initial guess for the non seasonal p, q 

parameters and seasonal P, Q parameters (Durdu, 2010). 

 

Study area 

 The Astore River basin (Figure 1) is located in Northern Pakistan. 

Astore River basin is situated in the high mountains of Hindukush-

Karakoram-Himalaya (HKH) region. The whole data set was divided into 

two periods; implementation period and testing period. The implantation 

period covered the data values from 1974 to 2003 and has been used for 

building of SARIMA models. The testing period covers the streamflow data 

values from 2004 to 2010 and has been used to evaluate the performance of 

both selected models.  
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Fig. 1  Astore River Basin in Pakistan map 

 

Results and discussion 

 The first step is to check whether the monthly streamflow time series 

is stationary and has seasonality. Monthly streamflow data shows that there 

is a strong seasonal pattern and it is not stationary. The summary of 

statistical indexes of the monthly streamflow time series is shown in table 1. 

The historical data of streamflow of Astore River showed positive skewness 

(i.e. 1.407). In addition, the data table indicates that testing period extremes 

(minimum value and maximum value) are within the range of the 

implementation period, which helps for better model prediction performance. 
Table 1. statistical summary of streamflow time series 

Duration Min. 

value 

Max. 

value  

Mean 

value 

variance Standard 

deviation 

Coefficient 

of kurtosis 

Coefficient 

skewness 

  1974-2010 

(whole data set) 19.34 654.9 136 19768.8 140.6 1.151 1.407 

  1974-2003 

(implementatio

n period) 19.34 654.9 135 20029.2 141.5 1.286 1.453 
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2004-2010 

(testing period) 29.63 612.3 140.2 18858.2 137.3 0.641 1.219 

 

Seasonal ARIMA models 

 The plot of the monthly streamflow time series shows that it requires 

a seasonal difference to obtain stationarity in mean and log transformation to 

make stable variance. ACF, PACF graphs can be obtained after applying 

seasonal difference to determine the p, q, P and Q parameters for SARIMA 

model. The streamflow data have a strong seasonal pattern and also non-

stationarity in mean, so seasonal differencing was performed. The seasonally 

differenced monthly streamflow data with ACF and PACF plots is shown in 

figure 2. According to the plots of the seasonally differenced streamflow 

data, spikes can been seen in the ACF plot at lags 12, whereas in the PACF 

plot, the spike can been seen at lag12 and lag 24. These plots suggest the 

seasonal AR(2) and MA (1) term. There is only one significant spike in the 

PACF plot at the non seasonal lags, whereas the pattern of the ACF plot 

indicates three significant spikes. So the non seasonal lags of both plots 

suggested a possible AR (2) and MA (3) term.  

 
Fig.2 ACF, PACF graphs after seasonal difference 
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Table 2. AICc and BIC values for different SARIMA model structures 

Model Structure AICc BIC 

ARIMA(2,0,1)(2,1,1)12 -1226.86 -1200.22 

ARIMA(2,0,0)(2,1,0)12 -1187.61 -1168.52 

ARIMA(2,0,2)(2,1,0)12 -1204.87 -1178.23 

ARIMA(1,0,1)(2,1,0)12 -1191.28 -1172.19 

ARIMA(2,0,1)(1,1,0)12 -1181.31 -1162.23 

ARIMA(2,0,2)(0,1,1)12 -1238.66 -1215.8 

ARIMA(2,0,3)(0,1,2)12 -1237.39 -1203.25 

ARIMA(1,0,2)(1,1,1)12 -1238.43 -1215.56 

ARIMA(2,0,2)(2,1,1)12 -1226.86 -1200.22 

ARIMA(1,0,2)(0,1,2)12 -1237.81 -1214.95 

ARIMA(2,0,1)(1,1,2)12 -1225.31 -1198.67 

ARIMA(1,0,2)(1,1,2)12 -1238.59 -1211.95 

 

 

 
Fig.3 Residual graphs of ACF,PACF of SARIMA model 

 

 Consequently, in the identification stage, the possible model for this 

monthly streamflow time series is SARIMA (2, 0, 3)(2,1,1)12. This model is 

fitted, its parameters are estimated. As the estimation of p, q, P and Q by 

ACF and PACF is based on empirical data, other model thus with values of 
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p, q, P and Q around the empirical estimated – need also to be considered, to 

determine which model is most suitable to represent the time series. The best 

model structure is selected on basis of the minimum value of AICc and BIC 

i.e SARIMA (2,0,2)(0,1,1)12. The values of AICc and BIC of different model 

structures are shown in table 2. After selecting the best model structure, the 

diagnostic checks are performed on this model. The residuals of ACF and 

PACF from this model are shown in figure 4. It can be seen that mostly 

residuals are uncorrelated; few spikes are significant at higher lags.  

 The selected model also passed the second test of diagnostic check. 

The value of the probabilities (p) in the Ljung Box test shows that the 

residuals have no remaining autocorrelations. The summary of this test is 

listed in table 3. The model passed all required checks and then used to 

forecast the next 7 years, i.e. testing period. From eq (1), in back shift 

notation, SARIMA (2,0,2)(0, 1, 1)12 model can be written as 

[1- Φ1NAR(B)- Φ2NAR(B)-B12+ Φ1NAR(B13)+ Φ2NAR(B14)]St = [1- Φ1NMA(B)- 

Φ2NMA(B2)- Φ1SMA(B12)+ Φ1NMA Φ1SMA(B13)+ Φ2NMAΦ1SMA(B14)]et.     

       (7) 

 By substituting the coefficients, one obtains the model; 

 St-0.5262St-1-0.3328St-2-St-12+0.5262St-13+0.3328St-14 = 

et+0.0934et-1+0.3737et-2+0.7564t-12-0.0706et-13+0.2827et-14.                   

        (8) 
Table 3 Summary of Ljung Box test for SARIMA Model 

lag Lag 12 Lag 24 36 48 

Chi square 2.90 15.00 38.80 46.40 

Df 6 18 30 42 

p-value 0.823 0.664 0.130 0.297 

 

Model Performance Evaluation 

 In order to evaluate the performance of the selected SARIMA model 

in comparison of AR model, one month ahead forecasts were generated for 

the testing period from January 2004 to December 2010. By examining the 

ACF and PACF graphs, the order P of AR model is 2.Thus AR (2) model is 

used for predicting monthly streamflow data. The statistical indexes used for 

this purpose are root mean square error (RMSE), the mean absolute error 

(MAE), the mean absolute percentage error (MAPE), the Nash efficiency 

(NE) and coefficient of determination (R2). They can be defined as: 

21
( )O fRMSE S S

N
 

      
  (9) 

1
o fMAE S S

N
 

       
  (10) 
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   (11) 

 Where N is the total number of observations, oS  is observed flow, fS
 is 

forecasted streamflow, 

oS  is average of streamflow and fS
is average forecasted flow. 

 The summary of all the statistical indices applied to evaluate 

prediction performance of both models are shown in table 4. Figure 4 and 5 

shows the hydrographs of original streamflow data and forecasted 

streamflow data by SARIMA and AR models, respectively. It can be seen 

from hydrographs that SARIMA model forecasted streamflow are in better in 

line with the original streamflow than the forecasted streamflow of AR 

model and also having large value of coefficient of determination. SARIMA 

models also provide less errors values of forecasted streamflow with respect 

to original streamflow. 
Table 4. Evaluation of model performance for testing period on basis of statistical indexes 

Statistical Index SARIMA 

(2,0,2)(0,1,1)12 

AR (2) 

MAE 22.414 24.651 

RMSE 42.765 47.572 

R2 0.903 0.884 

 

Conclusion 

 Streamflow forecasting is a vital component of planning and 

management of water resources. In this study, SARIMA applied for 

streamflow forecasting of Astore River in northern Pakistan. The 

performance of the both stastistical models is compared by generating one-

month-ahead forecast for testing period from 2004 to 2010. The results 

shows that SARIMA model perform better than AR model due to having less 

value of error and greater value of similarity index. It can be concluded that 

SARIMA model can be for modeling streamflow data at this site.  
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Fig.4 Observed and forecasted streamflow hydrograph using SARIMA model for testing 

period 

 
Fig.5 Observed and forecasted streamflow hydrograph using AR model for testing period 
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