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Abstract 

Dengue infection represents a global threat causing 50-100 million infections 

per year and placing half of the world’s population at risk. Even though how 

infection is controlled and cured rather remains a mystery, antibodies are 

thought to play a major role in clearing the virus. In this paper, we study the 

dynamics of dengue virus with humoral immune response and absorption 

effect. The proposed model incorporates a time delay in production of 

antibodies. The basic reproduction number R0 is computed and a detailed 

stability analysis is done. It was found that the model has 3 steady states, 

namely, infection free equilibrium, no immune equilibrium and the endemic 

equilibrium. Conditions for R0 were developed for the local stability of these 

3 equilibrium states. The global stability was studied using appropriate 

Lyapunov function and LaSalle’s invariance principle. We then established a 

condition for which the endemic equilibrium point is globally asymptotically 

stable. Also it was observed that the virus count goes to negligible levels 

within 7-14 days after the onset of symptoms.  

 
Keywords: Dengue, humoral immune response, absorption effect, basic 

reproduction number, stability 

 

Introduction 

Dengue continues to be a major public health concern in the world causing 

50-100 million infections per year and placing more than two billion people 

at risk mainly in the tropical and subtropical regions of Africa, Asia and 

South America. (WHO-VMI Dengue Vaccine Modeling Group, 2012). The 

dengue virus is transmitted to humans primarily by the bite of infected 

female mosquito Aedes aegypti. The DENV complex consists of 4 related 

but distinct viruses designated as serotypes, DENV-1, DENV-2, DENV-3 

and DENV-4. Infection with one dengue serotype may provide lifelong 

http://dx.doi.org/10.19044/esj.2017.v13n12p157


European Scientific Journal April 2017 edition Vol.13, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 
 

158 

immunity to that serotype and a short term cross-protective immunity with 

respect to others (Rodrigues, Monteiro & Torres, 2013). 

 

Majority of individuals who experience dengue infection have asymptotic 

infection or mild disease known as Dengue Fever (DF) which usually 

resolves within 7-14 days after onset of fever along with symptoms such as 

headaches, muscle or joint pain, rash and so on by a complex immune 

response process (Gujarati & Ambika, 2014; Nuraini, Tasman, Soewono & 

Sidarto, 2009; PAHO, 1994). Only a few would proceed to severe dengue, 

Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS). 

Without proper monitoring and immediate treatment DHF and DSS can be 

fatal.  

 

Though there is no effective treatment for dengue, understanding within host 

viral dynamics will help in developing interventions against dengue. 

Objective of this paper is to understand how immune process is involved in 

clearing the dengue infection. The human immune system is made up of two 

parts, the innate immune system and the adaptive immune system which 

produce antibody-secreting B cells (humoral immune response) and 

cytotoxic T cells (cell-mediated immune response) both of which are 

responsible to clear the infection and provide life-long immunity against a 

pathogen (Host Response to the Dengue Virus; Nikin-Beers & Ciupe, 2015; 

Wahala and de Silva, 2011; Janeway CA et al., 2001). Since antibodies play 

a more prominent role in clearing the dengue infection, in this study we 

consider only the antibody mediated immune response. The schematic 

representation of the human immune system is shown in Fig.1.  

 
Fig. 1: human immune system 

 

Mathematical models on dengue epidemiology have been widely studied. 

(Derouich & Boutayeb, 2006; Guzmán & Kourí, 2004; Summer, 2010). 
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However models on within host dengue viral dynamics has not been given 

much attention. Most of the existing models focus on virus dynamics without 

considering the absorption of pathogens into uninfected cells (Gujarati & 

Ambika, 2014; Nikin-Beers & Ciupe, 2015; Rotem & Koelle). As a result of 

absorption, pathogen density in the blood reduces with time. Thus in this 

study, we incorporate the loss of virus due to absorption effect.  

  

In section 2, a model with humoral immune response and absorption effect is 

formulated. In Section 3 a detail mathematical analysis of the model is done. 

Conclusion is presented in Section 4.  

 

The Model 

We modify the model presented in Nuraini et al. (2009) by introducing 

additional terms which describes the humoral immune response for within 

host primary dengue infection.  

The model is given by the following nonlinear system of equations 

,

,

,                                                     (1)

( ) ,

dS
S aSV

dt

dI
aSV I

dt

dV
kI V aSV pVZ

dt

dZ
H t dVZ Z

dt

 





  

  

 

   

   

 

where S-healthy cells (monocytes, macrophages, dendritic cells, hepatocytes 

or mast cells), I -infected cells, V -Dengue virus particles and Z-neutralizing 

antibodies. The description of parameters is given in Table 1.  

 

The production of antibodies is a multi-step complex process. Once the 

adaptive immune response starts fighting the dengue infection, B-cells in 

human body come into contact with virus and they become activated. These 

activated B-cells proliferate and mature into plasma cells. These plasma cells 

produce antibodies which circulate throughout the body binding to the virus 

and making them non-infectious (Gujarati & Ambika, 2014; Nikin-Beers & 

Ciupe, 2015). The delay in antibody production, , is significant and is 

introduced through a Heaviside step function, H. A numerical simulation of 

the equations of the model is given in Fig.2. Here we have assumed that the 

time delay in antibody production is 3 days. 
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Fig 2: Viral dynamics with absorption for τ=3. The parameter values used are μ=10, α=0.05, 

a=0.003, β=0.9, γ=0.1, p=0.01, δ=0.05, d=0.001, k=2, η=10. Initial condition 

(S,I,V,Z)=(200,20,40,0) 

By introducing the transformation Z Z



    as described in Nuraini et al. 

(2009) and replacing Z  with Z, the system reads as 

 

,

,

,                                                                (2)                   

,

where

.

dS
S aSV

dt

dI
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dt

dV
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   

  

 

 Table 1: Description of the parameters 

Parameter 

Symbol 

Parameter Description 

  Production rate of healthy cells 

  Death rate of healthy cells 
a  Rate at which healthy cells are converted to infected cells due to their 

interaction with virus particles 

  Death rate of infected cells 

k  Burst rate of virus particles 

  Rate at which virus particles degrade 

p  Rate at which virus particles are neutralized by antibodies 

  production rate of immune cells 

d Rate at which immune cells are stimulated by virus particles 

  Death rate of immune cells 
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Mathematical Analysis of the model: 

 

Basic Reproduction Number 

For within-host dengue viral dynamics, the basic reproduction number R0 is 

defined as the average number of secondary infections generated by a single 

infected cell placed in an uninfected cell population (Nikin-Beers & Ciupe, 

2015; Nowak & May, 2000).  

By using the next generation method, we obtain the following basic 

reproduction number for model (2) 

0 .                                                           (3)
( )

a k
R

f a



  


  

For a similar model, without absorption effect (without the term aSV in the 

3
rd

 equation of model (2)), the basic reproduction number was computed and 

is given by,  

0 .                                                                        (4)i

a k
R

f






 

For model (2), the basic reproduction number is less than that of a model 

without absorption effect.  
 

Equilibria of the model 

We are interested in looking at parameter values that leads to infection free 

steady sates and infectious states. For this we do a detailed stability analysis 

of the equilibrium points of model (2). 

Considering the steady states of system (2), the equilibrium points can be 

obtained and are given by  

                                                                                 (4)

                                                                                     (5)     

S
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

                                                                             (6)
( )

V

dV 


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By substituting equations (4) & (6) in the 3
rd

 equation of model (2) and 

solving for its steady state we obtain, 
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3 2

3 2 1

2

3 2 1

2

3 2 1

0

( ) 0                                                                (7)

Thus

0 0                                          (8)
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where 

3

2

2 0

2

1 0

                                                                      (9)

( ) (1 )                                (10)
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 
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Equation (7) has one solution 0V    and another 0V    solution.  

 

Local Stability 

Next we analyze the stability of the infection free equilibrium ( 0V   ) and 

endemic equilibrium ( 0V   ).  For this we must first linearize the model 

about its equilibrium points and the corresponding Jacobian matrix is given 

by 

( ) 0 0

0

                             (12)( )

0 0
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aV aS
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dZ dV










 

 

   

 

   
 

 
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 

  
       

The characteristic equation for J would take the form,

 

4 3 2

3 2 1 0( ) 0.                                        (13)G G G G G           

The stability properties that were established are summarized in the 

following theorems.  

 

Infection free steady state 

Theorem 1 

The disease free equilibrium 1 ,0,0,0




 
  
 

E  is locally asymptotically stable 

if 0 1R . If 0 1R , the equilibrium 1E  is unstable.  
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Proof 

After substituting the equilibrium values for ,  ,    S I Z  obtained from 

equation (4), (5) and (6) and applying 0V    in (12), the characteristic 

equation for J can be written as                                                                                                                                                                      
2

( ) ( )( ) =0 

where  is an eigenvalue. 

f a ak f a
G

       
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



      
    

 
 

 

This can be further simplified to 

 2

0( ) ( )( ) ( ( ) ) ( )(1 ) 0  G f a f a R                     

The eigenvalues of this equation are 

  

1

2

2

0

3

( ( ) ) ( ( ) ) 4 1

2

 

 

        
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

 

 

        

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For 0 1R , ( ) 0G    has all negative roots. Thus the equilibrium point 1E  is 

locally asymptotically stable. 

If 0 1R , ( ) 0G    has 2 negative roots and one positive root. Thus the 

equilibrium point 1E  is unstable.  

 

 
Fig 3(a): Infection free equilibrium for 

R0<1. The numerical values of the 

parameters used are μ=10, α=0.05, a=0.003, 

β=0.9, γ=0.1, p=0.01, δ=0.05, d=0.001, k=2, 

η=10. 

 
Fig 3(b): Infection free equilibrium for 

R0>1. The numerical values of the 

parameters used are μ=10, α=0.05, a=0.003, 

β=0.9, γ=0.1, p=0.01, δ=0.05, d=0.001, 

k=20, η=10. 

 

It is clear from Fig.3 (a) that for 0 1,R  S   converges to 



, ,  and I V Z  

converges to 0. From Fig.3 (b) we can see that when R0>1, the equilibrium 

becomes unstable.  
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Endemic Equilibriums 

The limiting condition where virus achieves its maximum due to the absence 

of linear response is 
d


.  Thus the no immune equilibrium can be obtained 

in two ways either d=0 or η=0. 

 

Case 1 

Let d=0.  

Then from equations (9), (10) and (11) we have, 

3

2

2

2 2 2
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P a f

P a k a f



   
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 

  
 

and from equation (8), 
2 2 2

1

2

2

which can be simplified to

P a k a f
V

P a f

   
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2
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                                                                             (14)

a k a f
V

a f

   
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  

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Thus we have the no immune endemic equilibrium corresponding to d=0, 

2

( ) ( )
, , ,0                       (15)

( ) ( )

f a k a f a k a f
E

a k a k a f

        

   

    
  

  

 

The local stability property of 2E  is given by the following theorem. 

 

Theorem 2 

Let 0d  . If 0k    and 0 1R  , then the no immune equilibrium 2E  is 

locally asymptotically stable.  

 

Proof 

The characteristic equation corresponding to the equilibrium 2E  can be 

simplified to 
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  3 2
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The eigenvalues of equation (16) are 

 
1    

and the roots of 
3 2
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a k k f a k
q a

f k k

q f a R
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Since k  and 0 1R  , 0 1 2,  and q q q  are all positive. 

Also it can be proven that 1 2 0q q q .  

 

Thus by the Routh Hurwitz criterion, the roots of equation (17) has all 

negative real parts. Hence all roots of the characteristic equation (16) have 

negative real parts when k   and 0 1R 
 
. Thus E2 is locally asymptotically 

stable. Fig.4 demonstrates this phenomenon. 

 
Fig 4: No immune equilibrium for d=0 and for R0>1. The numerical values of the 

parameters used are μ=10, α=0.05, a=0.003, β=0.9, γ=0.1, p=0.01, δ=0.05, k=20, η=10 and 

𝛕=3.  
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Case 2 

Let 0.    

Then from equations (9), (10) and (11) we have, 
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The no immune endemic equilibrium corresponding to η=0 is, 

3
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The stability property of E3 is summarized in Theorem 3.  

 

Theorem 3 

Let η=0. If 0k    and
 

01 1
a

R
d a



 
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
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equilibrium 3E  is locally asymptotically stable. If 
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0 1
a

R
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
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becomes unstable. 

 

Proof 

Local stability of the equilibrium point E3 is governed by the eigenvalues of 

the characteristic equation corresponding to E3.  

One of the eigenvalues is 1
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 
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by rearranging we have,
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The other eigenvalues are the roots of  
3 2
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Since k   and 0 1R  , 0 1 2,  and q q q  are all positive. 

Also it can be proven that 1 2 0q q q . 

Thus by the Routh Hurwitz criterion, the roots of equation (20) has all 

negative real parts.  

Hence all eigenvalues have negative real parts. Thus E3 is locally 

asymptotically stable. 

If 
 

0 1
a

R
d a


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 


 

By rearranging we get,  

1
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Therefore at least one eigenvalue has a positive real part hence E3 becomes 

unstable.  

 

Further there exists another endemic equilibrium, E4, virus persistence in the 

presence of antibodies.  

 4

ˆ ˆ
ˆ ˆ ˆ ˆ, , , , , , 1                   (21)
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E4 exists provided that, 
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ˆ
ˆ1 0      where        

which implies
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Hence we have the results in theorem 4.  

 

Theorem 4 

Let ˆ0  and  Z 0.    If 0k    and 
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, then the 

equilibrium 4E  is locally asymptotically stable.  

 

Proof 

The characteristic equation at the equilibrium 4E  can be written as 

   

   

2

2 2

ˆ ˆ ( )

ˆ ˆ                 ( )      0        (22)

Sa Sa k a

Sak Sa k

        

      

      

    

 It can be shown that all roots of equation (22) has negative real parts if 

ˆ
( )

S
a k







 and .k    

Thus we have, 
( )

d

d a a k

 

  


 
 

 

By rearranging,

1
( )

a dk a

d a d a

 

     
 

 

 

 0Hence 1
a

R
d a



 
 


 . 

Numerically we can see this in Fig. (5). 



European Scientific Journal April 2017 edition Vol.13, No.12 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

169 

 

Fig 5: Endemic equilibrium. In this case 0 1
( )

a
R

d a



 
 


. The equilibrium points are 

marked with an ' ' . We can see that ˆ ˆ ˆ ˆ, ,  and S I V Z  converges to the equilibrium values. 

The numerical values of the parameters used are μ=10, α=0.05, a=0.003, β=0.9, γ=0.1, 

p=0.08, δ=0.05, d=0.001, k=2, η=0 and 𝛕=3. 

 

Global Stability 

Theorem 5 

We may assume that the equilibrium point E4 appears in the interior of the 

first quadrant. That is 
 0 1

a
R

d a



 
 


. When 

ˆ
1

aV
k 



 
  

 
 holds, 

   ˆ ˆ ˆ ˆ, , , ln ( ln ) ( ln ) ( ln )W S I V Z A S S S k I I I B V V V E Z Z Z         is 

a continuously differentiable function, and the interior equilibrium 

 ˆ ˆ ˆ ˆ, , ,S I V Z  is globally asymptotically stable in the interior of the 1
st
 

quadrant. 

 

Proof 

Note that E4 is obtained by letting 0  . Let 

ˆ ˆ ˆ ˆ( , , , ) ( ln ) ( ln ) ( ln ) ( ln )W S I V Z A S S S k I I I B V V V E Z Z Z         

Where  ˆ ˆ ˆ ˆ, , ,S I V Z is given by equation (21). 

ˆ ˆ ˆ ˆS I V Z
W A S S k I I B V V E Z Z

S I V Z

       
               

      
 

After substituting for  , , ,S I V Z  by equation (1) we obtain, 
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   
ˆ

( ) ( )

ˆ ˆ
( ) ( ) ( ) ( )

S
W A S aSV A S aSV k aSV I B kI aSV V pVZ

S
I V Z

E dVZ Z k aSV I B kI aSV V pVZ E dVZ Z
I V Z

     

   

           

         

 

This can be further simplified to, 
ˆ

( ) ( ) ( ) ( ) ( )

ˆ ˆ
ˆ( ) ( ) ( ) ( ) (23)

S
W A S A S k B A aSV B kI Ed Bp Vz E Z

S
I V Z

AaSV B V k aSV I B kI aSV V pVZ E dVZ Z
I V Z

     

   

           

         

 

Now we define A, B and E by letting 

0,   0   and   0k B A B Ed pB       .  

From these we get, ,   ,   
p

B k A E
d


     . 

From the second and third equations in (1), we obtain 

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ and 0

aSV
I k I aSV V pVZ


      

From these we can derive, 

ˆ ˆ ˆ( ) .                                     (24)AaSV B V k aSV V pVZ       

after substituting V̂
d


 and equation (24) we can simplify equation (23) to 

ˆ ˆ
( )( ) ( ) ( )

ˆ ˆ ˆ ˆ                                                                          (25)

S I V
W k S k S k aSV k I kI

S I V
V aSV p VZ

       

  

        

  
 

Using ˆ ˆ ˆS aSV   which follows from equation (1) we have,  

     
2ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ2 (26)
ˆ

S S S aS V
k S S S k k aSV

S S SS
       

     
                    

     

 

From equation (1) we also have ˆ ˆˆ ˆˆ ˆ ˆ ˆ and p Z .I aSV V kI aSV V      

Simplification of 

 
2ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ
ˆ ˆ3 2                                     (27) 

ˆ ˆˆ

aS V I V
k aSV k aSV k I kI V aSV p VZ

S I V

S VI ISV S S
k I a SV

S SISV SV I

     

 

 
         

 
   

           
  

 

From equations (25), (26) and (27) we have 
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 

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆˆ
ˆ ˆ ˆ2 3 2

ˆ ˆ ˆˆ

S I V
W k S S k aSV k I kI V aSV p VZ

S I V

S S S VI ISV S S
W S k k I a SV

S S SS ISV SV I

         

   

 
            

 
    

                  
    

By further simplification 
ˆ ˆˆ ˆ

ˆ(1 ) 2 3                      (28)
ˆ ˆ ˆ

aV S S S VI ISV
W k S k I

S SS ISVV I
  



   
               
       

Since 
 

2
ˆˆ

ˆ 2
ˆ

S SS S
S

S SS
 

 
     

 
 and                                                  (29) 

Since Arithmetic mean> Geometric mean, 

ˆ ˆ
ˆ 3 0

ˆ ˆ

S VI ISV
k I

S ISVV I


 
     

 
                                                                     (30) 

From equations (28), (29) and (30) we can conclude that if 

ˆ
1 0,  then 0.

aV
k W



 
    

 
 

Let  4( , , , ) | , , , 0, 0E S I V Z S I V Z V    is 

ˆ ˆ( , , , ) | , 0, 0
ˆ

I V
E S I V Z I V

VI

 
    
   

Let M be the largest invariant set in E. If M contains some point  ˆ ˆ, , ,S I V Z
 

such that ˆV V then 0
dZ

dt
 . Thus a contradiction occurs.  

Therefore ˆ  and V V I I  . Hence by LaSalle’s invariance principle, E4 is 

globally asymptotically stable in the interior of the 1
st
 quadrant.  

 

 

Conclusion 

A mathematical model with antibody mediated immune response and 

absorption effect was developed to study within host dengue virus dynamics. 

We assumed that there is a time delay in production of antibodies and at the 

time of infection antibodies are below detection levels. A detailed stability 

analysis of equilibriums were done and it was found that the model has 3 

steady states, namely, the infection free equilibrium, no immune equilibrium 

and the virus persistence in the presence of antibodies equilibrium. By 
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establishing the characteristic equation of the model at infection free 

equilibrium, it was observed that the infection free equilibrium is locally 

asymptotically stable if R0<1. The no immune equilibrium was obtained in 

two ways either by making the linear immune response η=0 or by making 

the nonlinear immune response d=0. In the absence of immune response, the 

virus count would settle to some nonzero value making the infection 

endemic.  

Local stability property of endemic equilibrium was derived. It was noted 

that if 
 

0 1 ,
a

R
d a



 
 


the endemic equilibrium is locally 

asymptotically stable. By introducing a suitable Lyapunov function and 

considering LaSalle’s invariance principle, it was observed that the endemic 

equilibrium is globally asymptotically stable if 
ˆ

1 .
aV

k 


 
  

 
  

We found that the basic reproduction number for model (2) is less than that 

of a similar model without absorption effect. Thus it can be seen that 

absorption effect has a positive influence on virus clearance from the body 

than that of a model without absorption effect.  Numerical simulation results 

provide evidence that in general the dengue virus gets cleared from the body 

within 7-14 days which is agreeable with clinical studies.  

Further, the model can be improved by including a continuous function for 

the time delay. Also we can analyze the effects on the model by changing the 

delay in the antibody production.  
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