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Abstract  

 The purpose of this study was to explain some aspects of ontogenetic 

growth in pigs by analysing the relationships between variables that are 

significant to the development of animals. The novelty of the study is a new 

modelling approach to the growth problem, with the attention that has been 

paid to both a new set of variables, and an analytical discrete-continuous 

hybrid model, innovative for the field. This is a first species-specific hybrid 

model for animal growth formulated in discrete-time difference equation 

technique. The efficiency of the model is not only due to the modelling 

technique but also due to a set of relevant variables, especially a feed 

conversion coefficient, which provides a link between macro and micro 

physiological scales. The model is based on functional relationships between 

relevant variables acquired from experimental data analyses, and field 

observations. The concept explains some aspects of growth in pigs from 30 

kg to 600 kg, which is considered the maximum individual weight for a boar, 

and further growth up to a species maximum weight. The model predicts that 

boar can reach their maximum individual weight of 600 kg when 6,40 years 

old and are required to consume 62,51 kg of feed to put on the last kilogram. 

The phenotypes that can attain their maximum individual weight go through 

bifurcation of the growth trajectory, a transform in the growth mode. After 

bifurcation, the smallest number of the phenotypes go on the growth 

trajectory that leads to a set of species maximum weights of over 1205 kg, 

and the greatest number of phenotypes continue to live until aged 24,90 

years, provided their maximum weights do not change. The study includes 

growth rate equations, identifies species maximum weight phenotypes, and 

produces insight into pig longevity. The results suggest that species 

maximum weight growth trajectories are phenotype-dependant. A modified 

discrete-time difference equation technique combined with standard 

continuum methods is an appropriate formalism to model ontogenetic growth 

in animals.   
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Introduction 

Ontogenetic growth  

 In animal development, growth is an indispensable process, and is 

probably the most specific and variable trait studied that entails many if not 

all levels of individual phenome. Morphogenesis, reproduction, senescence, 

and many other biological events occur alongside or during the course of 

growth. Development is a continuous process, and sometimes the “trait” that 

we are interested in is actually the growth process itself (Rice, 2008). 

Numerous factors influence the growth of an individual. These are internal, 

such as inherited qualities and physiological particulars, and external, such as 

environmental conditions.  

 Over the last century, there has been moderate progress in the 

development of novel growth theories; however, a number of growth 

functions have been created (Dumas at al. 2008) and applied in industry (de 

Lange et al. 2001). At the same time, there are few if any models, designed 

to describe growth solely in pigs. In most cases, one of the considered 

theoretically universal animal growth functions has been used (Schinckel & 

de Lange, 1996). The most frequently applied mathematical function to 

model growth in animals is reportedly the Gompertz equation (Strathe et al. 

2008) and the von Bertalanffy equation is considered most suitable to model 

individual growth (Dumas et al. 2010). To evaluate pigs’ genetic potential 

for growth in industrial conditions, the Gompertz equation was suggested 

(Wellock et al. 2004).  

 Although the present range of growth functions seems to serve the 

purpose well (Birkett & de Lange, 2001), a call for new, advanced, 

biologically meaningful (Hirst & Forster, 2013; Boukal et al. 2014), next 

generation models exists. A unified mechanistic theory of growth remains 

elusive, a synthetic explanation is still needed for how and why growth rates 

vary as body size changes (Sibly et al. 2015). The reason for this is the 

apparently insufficient levels of qualitative and quantitative understanding of 

the related growth processes the models reveal (Dumas et al. 2010). The 

purpose of modelling growth in animals is to integrate the existing 

knowledge about the process, and apply mathematical methods to identify 

the qualitative and quantitative features, which are as yet unknown, likely to 

remain out of sight, or prove empirically unapproachable. 

 

Animal growth models 

 Despite a considerable amount of accumulated experimental data, 

understanding of the biological processes that cause and control growth is far 

from complete, and theoretical tools have not been developed to resolve the 

issues that need to be addressed (Houle et al. 2010). The tools are thought 

concepts, models or theories that can convert the accumulated experimental 
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data into knowledge (Brenner, 2010). These concepts can be formulated 

either in verbal or in mathematical form. The mathematical formulation is 

preferable due to the clear advantage of yielding analytical analyses. 

Moreover, biological interactions and processes are often nonlinear, and this 

is where intuitive, verbal reasoning may let us down; whereas mathematical 

methods allow us to analyse diverse biological processes (Baker et al. 2009).  

 Many animal growth models currently used in science and industry 

are built upon an equation first invented by Pütter (Boukal et al. 2014). A 

range of such models entails the Pütter equation and several derivatives of it, 

such as the well-known growth functions the von Bertalanffy, the Gompertz, 

logistic, and some others. These growth functions were produced when 

solving ordinary differential equations, by which certain speculative 

proportionalities between growth rate and animal weight were specified, 

without reference to the biological species studied. The functions obtained 

after solving the equations were termed general or universal growth 

functions. The resulting models specify animal growth dynamics, based on 

what is considered reasonable or believed to be true.  

 While some authors have considered the von Bertalanffy’s law as one 

of the most universal biological patterns (Sousa et al. 2008), others who are 

more sceptical have argued that the universal growth functions provide only 

retrospective curve fitting with little, if any biological insight (Pittroff and 

Cartwright, 2002). If the derived functions are sufficient and practicable for 

general purposes, they remain inadequate for scientific explication of the 

complex variables that cause the growth of numerous biological species. It 

follows that a different approach is required: at first focus on species-specific 

growth models and then, applying acquired knowledge, formulate a unified 

concept of growth across species. The study offers a first analytical model to 

implement this approach. 

 

Hybrid model for animal growth 

 There are recognised difficulties in applying mathematical methods 

to model development in animals. Living organisms entail not only the 

notion of biological function or purpose but also the notion of growth and 

development that differentiates biology from other natural sciences. 

Moreover, growth and development facilitate the increase of structural and 

functional heterogeneity in animals. Growth is an essential process in 

development that has been identified as a significant factor in the production 

of spatial heterogeneity (Maini et al. 2012), which complicates its 

mathematical modelling.  

 The two most classical modelling techniques of biological 

phenomena are continuous-time, and discrete-time models. A number of 

biological objects do not fit either formalism; such systems contain 
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heterogeneity, where some phenomena are continuous while some are 

discrete. The modelling of this kind of systems would then naturally involve 

two different parts, a continuous one in ordinary differential equations, and a 

discrete one in difference equations, yielding what is called a ‘hybrid’ system 

(Mailleret et al. 2009). Hybrid modelling in biology has mainly been applied 

to couple continuous and discrete formulations. Although hybrid models are 

not new, the methods and approaches keep on developing, as well as the 

field of applications that keep widening (Stéphanou & Volpert, 2016). In this 

field, neither a hybrid model for animal growth was published nor an 

appropriate modelling technique specified. Hybrid dynamical systems 

combine evolution equations with state transitions; when the evolution 

equations are discrete-time, also called map-based, the result is a hybrid 

discrete-time system (Cao & Ibarz, 2010). 

 This reasoning suggests a possible explanation for the potential 

efficiency of modelling in animal growth by the discrete time modelling 

technique. If animal growth phenotype is a rapidly changing and not smooth 

function with many variables, then evidently, a discrete time model can 

outline the coarse dynamics of the same process without taking into 

consideration some implicit microscopic level events that take place in the 

chosen discrete time unit.  

 Difficulties cause not only intrinsic heterogeneity of biological 

objects but also different growth rates of different organism parts. 

Accordingly, in order to go beyond the limitations the growth functions 

impose (Boukal et al. 2014), it is necessary to extend the present range of 

methods, and develop the existing potentials of hybrid models (Hasenauer et 

al. 2015). For this purpose, a modified discrete-time difference equation 

technique combined with standard continuum methods would be an 

appropriate formalism.  

 

The model's description 

 In this study, a hybrid modelling technique is applied. This is an 

attempt to formulate and analyse a hybrid model of animal growth, which 

combines the well known, though modified discrete-time difference equation 

technique, and standard continuum methods.  

 The study provides a partial explication of the changes in traits 

associated with the growth under nonindustrial conditions. However, the 

variables considered in the study are chosen to represent the underlying 

biology, but direct measurements of these variables are often difficult in 

practice. The model is a species-specific exercise constructed by considering 

relationships between variables analysed in experiments and field 

observations, without the inclusion of any theoretical premise.  
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  In the model, discrete time and continuum modelling techniques are 

combined to set up a scheme, which develops as time proceeds, and therefore 

is considered as a dynamical system. A big advantage of the model is the 

absence of unknown speculative parameters; the parameter estimation 

problem does not exist. Most models for animal growth are based on events 

taking place at the macroscopic level. This model has variable Z, a feed 

conversion coefficient, which provides a link with microscopic levels 

metabolic processes and, as a result, a coupling of different biological scales 

has been established. 

 Mathematically, the model is formulated as a set of partial difference 

equations with discrete chronological time. A marked quality of the model is 

its formulation to enable the relevant information to be concentrated in a 

parameter, and not in the initial and boundary conditions, as is usually the 

case with models of continuum dynamics. Growth in the pig under 

nonindustrial conditions was modelled from 30 kg up to a species maximum 

weight. 

 

Material and methods  

Data set 

 The data set was obtained from experiments on growing domestic 

pigs, LW, fed from 30  6 kg up to 96 4 kg live weight. The pigs were 

housed and fed under non-industrial conditions, either in a pig testing station 

or in research facilities. The animals were kept loose in groups of up to four 

to a pen, or individually in pens, fed a dry balanced feed with unlimited 

access to water contingent on the experiment design, ad libitum, or a 

constrained diet, in accordance with the current body weight, adjusting the 

feed quantity once a week. Besides the experimental data set, records 

available from research pig-breeding farms, as well as the wild pig data 

publicly available from some European national parks, were used. 

 The growth processes are discussed and modelled in terms of body 

weight, daily gain, and a feed conversion coefficient. The performance of a 

phenotype, a trait, is regarded as a biological function of the underlying 

causal factors. The identification of such factors or variables is a separate 

task to complete prior to formulating a model. The quality of the model is 

contingent upon the choice of the variables. The two main variables used in 

the model, parameter K, an invariant, and Z, a feed conversion coefficient are 

not conventional biological traits, cannot be directly measured in animals, 

and are dimensionless.  
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The model's variables 

'M' stands for an individual animal current live weight, measured in 

kilograms.  

M= {M ℝ  + | 30≤M ≤ 600}, Individual maximum weight, M = Mx = 600 kg 

'm' is animal initial considered weight, measured in kilograms, M ≥ m,  mo = 

30 kg. 

't' is chronological current time, measured in days starting from animal birth.  

t = {t ∈  ℕ  | 0< t < ∞}, ∆t = 1, 2, 3...n, n ∈ ℕ .  

'to' is starting time, correspond mo, to = 90 days.  

'K' is a parameter, nondimensional.  

K= {K ∈ ℝ  +| ≤ K < 11}, Ko =1.   

'Z' is a current feed conversion coefficient, dimensionless.   

Z= {Z  ℝ  +| Zo≤ Z < ∞}, (Z = ∞)  (M =Mx). Zo correspond mo.  

 

Results  

Growth up to 600 kg 

 Analysis of the experimental data identified some functional 

relationships between variables, which form the model's base. Parameter 'K' 

proved to be an invariant that is equal for the same-weight animals during 

rapid growth between mo = 30 kg and M = 100 kg regardless of individual 

pig daily gain. It is considered that the relationships hold up to Mx = 600 kg. 

The parameter 'K' has the following form:   

 oo ttm

tM
K






2
 

(1) 

Equation (1) may be written in many forms; however, the two following 

equations are usually used: 
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From the same data set, the following relationship was found: 
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Substituting (4) into (2) and after obvious transformations, one get 
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K

M
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 (5) 

From (1) and (5) follows: 
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(6) 

 

 In this section, equation (5) will be analysed. Equation (5) is valid not only 

for rapidly growing animals, but also for the animals that reached individual 

maximum weight, Mx, but not species maximum weight. At this stage, it is 

necessary to calculate Zx to derive relevant relationships. As the first step, it 

is shown how to find parameter 'K' under the condition M = Mx = 600 kg. In 

formal notation: K|(M=Mx) = Kx. Data analyses acquired from pig-breeding 

farms where mature boars were kept proved that (7) converges as M→ Mx, 

and the following limit holds: 

3
1

12
lim 













 K

K

MxM
, where (K → Kx)|M → Mx. 

(7) 

It follows from (7) that under condition (K= Kx), Kx = 5 + 3√3 = 10,19615. 

 The next step is to calculate Zx, Z|(M=Mx)(K=Kx) = Zx.  

 Substituting Kx and Mx into (5) one obtains Zx= 62,51. Zx an 

analytical expression that will be presented in sections below. One should 

notice that Zx and Kx are constants both linked to Mx= 600 kg. Zx has a clear 

biological interpretation. It specifies the quantity of feed in kilograms needed 

for a boar to put on the last kilogram to reach its individual maximum weight 

Mx= 600 kg. Kx specifies the association between M and t at Mx . Kx provides 

the means to calculate the time at which Mx was reached.  

 From (Kx=10,19615)(Mx=600) follows that t|(M=Mx)(K=Kx) = tx = 6,40 

years, is in agreement with field data. This means that under the model 

conditions, boars can reach Mx in 6,40 years, consuming 62,51 kg of feed to 

put on the last kilogram. This result is experimentally testable. 

 It was shown that equation (5) applies not only to model weight 

dynamic during the period of rapid growth, but is also correct up to the point 

an animal reaches maximum weight, Mx.  

After individual maximum weight, Mx is reached, animals do not grow. It 

means that live weight Mx does not change and, as a result, feed conversion, 

Z becomes infinity, (t > tx)|(M=Mx)→ (Z=∞). Under the above constraint, and 

considering equation (5), it follows: 

K
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 , where (K→ K1)|Z → ∞  

(8) 

 From (8) under condition (K=K1) follows, K1= K|(M=Mx)(Z=∞) = 

10,04975. This result allows calculation of the time that corresponds to K1, 

presented below.  

 It follows from (M=Mx)(K=K1), that t|(M=Mx)(K=K1) = t1 = 24,90 years. 

The time t1 may be named 'obtainable life span'. The main condition to reach 

t1 is that Mx remains constant between tx and t1. It is possible to show that not 
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all phenotypes can reach t1. Those phenotypes that can achieve their 

individual maximum weight, Mx can live until aged 24,90 years, provided 

their live weight Mx remain constant. However, t1 is not a species maximum 

life span. It follows from the model, that theoretical maximum life span in 

the pig is 49,31 years, not analysed in this article. 

 The following relationship was found from data set analyses: 

   

1
1

12





 Z

K

K

t

t

o

 
 

 Results found earlier suggest that if the following condition holds 

t|(M=Mx)(K=K1) = t1, than follows  
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1
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




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(9) 

It follows from (9) that t|K → K1 = t1, t1/to = K1
2.  

Considering equations (1), (5) and (6), it follows 

  
   MZKKZm
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M
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o
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


212
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(10) 

The condition that (10) reaches maximum is: mo(Z(2K+1)-2K)-MZ = 0. It 

means that the relationship that maximises (10) is  

,
2

12
0 Z

K
K

m

M
  Zo =1. 

 

(11) 

 On the other hand, taking into consideration (10) one can see that 

there is no growth if Z(2K+1)-2K = 0. It means the condition under which 

animals do not grow at mo is Zo =2/3. This is an unexpected result, 

counterintuitive and allegedly puzzling, attributable to the nonlinearity of the 

growth process. Formal, linear, empirical logic says that Z may not be less 

than 1. This fact has some important implications. 

 In the sections above it is demonstrated that in experiments, collected 

data analyses and the model provide correct relationships between variables. 

The identified relationships extended beyond the experimental data domain, 

show results consistent with field observations.  

 The model predicts that boar can reach an individual maximum 

weight, Mx 6,40 years old. Phenotypes that can reach Mx can live up to t1= 

24,90 years, provided Mx remains constant between tx and t1.  

 The constants: Kx, K1, Mx, tx, t1, will be important tools in further 

analyses. Below, the main facts are summarised.  

x
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(16) 

 

(16a) 

 

(17) 

 

 

 Due to the definition of the feed conversion coefficient, between Zx = 

62,51 and Z= ∞ there is a tiny indefinable border. In simple words, after the 

instant Mx is reached, Z= ∞. Passage to the limit procedure, for example 

(Z→∞), should be regarded a mathematical abstraction, and not a workable 

definition.                    

 

Growth up to species maximum weight 

 In this section, species maximum weight will be defined. It is 

understandable that the species maximum weight is greater than Mx. 

However, I start with Mx, considering it variable. Taking the Kx as variable 

into consideration as well, consider (1) and (14) as a system. The equation 

that follows is given by 

02
2

2 



o

xx
x

m

MK
K  

(18) 

 There is a standard procedure of how to find the maximum Mx. The 

condition that Mx in (18) has maximum is dMx\dKx = 0. It follows max Mx= 

Mxx1 = 4moKx = 1223,538 kg. A sufficient condition for the maximum to 

exist, is d2M\dK2 <0 |(M=Mx)(K=Kx), is fulfilled. There is an inflection point (IP) 

on the Mxx growth trajectory. From d2Mx\dKx
2 = 0, it follows that inflection 

point, Mxx|ip = 2moKx = 611,769 kg. The inflection point on the Mxx growth 

trajectory, most likely the last one, was expected. This time, Mxx1 = 1223,538 

kg was found by applying continuous methods, and the same result will be 

obtained below by applying the difference equation technique. Similarly to 
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in the analyses above, in searching for species maximum weight, Mx was 

considered variable, and accordingly Kx and K1. Consider (12) and (13) a 

system; after multiplying and rearranging, it follows:  


om

1    
   oxxxxxo

xxooxx

x

x

mKMKKKm
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54

5104
3

3

. 
(19) 

The condition under which (19) reaches maximum is: mo(4K3
x – 5Kx) – 

Kx(MxKx + mo) = 0. From this follows:  

x
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)32(2
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2

3


  

(20) 

 Numerically, Mxx3 = 1205,884 kg, is different to Mxx1. The average of 

Mxx1 and Mxx3 is Mxx2, is given below:
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(21) 

 Therefore, there are the following three species maximum weights, 

obtained by applying both continuous and discrete methods:   

Mxx1 = 4moKx =  1223,538 kg 
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
 =  1214,711 kg 
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xo
xx

K

Km
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)32(2
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
 =1205,884 kg 

(22) 

 

(21) 

 

(23) 

 I can remind the interested reader that the heaviest reported domestic 

boar was 1157 kg (Mayer, 2009). 

  It follows from the model that Kxx = 10,09807 is a new constant 

related to Mxx. The relation between Kxx and Kx is given by 

x

xxx
K

KK
1

 . 
 

 The related time, t|(M=Mxx) = txx = 12,69 years. txx/to = (Kx·Kxx)/2.  

 A possible interpretation is that (21), (22) and (23) are species 

asymptotic maximum weight phenotypes. A most unusual feature was that in 

order to find out the phenotypes, a combination of discrete and continuous 

methods was needed. Neither of the methods can produce the result 

separately. It seems that the information about the phenotypes was spread 

over different biological levels, or different scales, and conceivably had 

diverse biological meanings. The next point to underline is the procedure by 

which the phenotypes were found. The essential starting point was in field 

observations found Mx. It was chosen as the most frequently observed boar 

maximum weight. However, species maximum weight, Mxx does not directly 

follow from Mx. Nevertheless, by considering Mx as variable, and applying 
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both discrete and continuous methods, the phenotypes were identified. This 

implies that the biological information about species maximum weight is 

also present in those animal genomes, which never reach it. It is in line with 

general notions about the process, and suggests the existence of a gene or 

process that either stops or enables the trajectory Mx→Mxx.  

 

Rapid growth  

 The aim of this section is to concentrate on the rapid growth, which 

occurs between 30 kg and 100 kg live weight in domestic pigs. In this weight 

range, a maximum growth rate is observed, and during the rapid growth, 

physiological and anatomical traits undergo fast change that requires 

additional attention. General equations (10) and (16) for growth are 

inconvenient for this purpose; therefore, a restricted model for rapid growth 

was built.  

 The mathematical base for the rapid growth model is a system 

derived from (2) and (4). The following equation is a good approximation of 

rapid growth M\mo = 2K-1. However, to apply (2) and (4), the following 

system is to consider:  

12  K
m

M

o

 

0


t

Ktt o  

 
0

2




ZK

ZK
 

 

(24) 

 

 (25) 
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 The system of (24), (25) and (26) equations suggests that equations 

(2) and (4) were rearranged and considered differently. From (24) follows 

12

2








K

M

K

M
,100 > M ≥ mo. 

(27) 

From (25) follows  

2

2

t

tK

t

K o



,100 > M ≥ mo. 

 

(28) 

From (27) and (28) follows 

2
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t
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t

M oo



, 100 > M ≥ mo. 

  2

2

12

2

tK

tMK

t

M o







,100 > M ≥ mo. 

(29) 

 

(30) 

 Considering (25), (26) and (27) one more growth equation is given by 

o

o

ZKttKZ

KZm

t

M








)2(

2
,Z > K, 100 > M ≥ mo. 

(31) 
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 The above growth rate equations (29), (30) and (31) are only some of 

many possible under the restricted model. Below, a more advanced approach 

will be shown, which entails speculation about the growth genetic aspect. 

Considering (27) and (30), it follows  

o

oo

gtt

Ktt

t

tK

t

K 





2

2

,100 > M ≥ mo. 
(32) 

 In (32) 'g' is a speculative parameter, regarded as a genetic factor, 

which is thought to specify a particular growth phenotype. In this paper, 

'genetic factor' is not discussed further. From (27) and (32) follows 








 






o

ooo

gt

Ktt

t

tK

t

m

t

M 22
,100 > M ≥ mo,(𝑔 ∈ ℤ) ∨ (𝑔 ∈ √ℤ+) . 

 

Discussion  

Growth dynamics 

 It is widespread opinion that the growth rate in many mammals has a 

sigmoid form (Li & Wu, 2010). This growth curve form is considered 

universal and is modelled by a number of growth functions (Barberis et al. 

2011). The form results from growth dynamics, where it has one maximum 

and presumably two inflection points, either side of the maximum. In most 

cases, the rest of the curve is not specified, assuming it is smooth, 

monotonic, and asymptotically ends up at the animal maximum weight point. 

 This picture is tentatively accepted as a working hypothesis and has 

been frequently reproduced while modelling the growth of farm animals. The 

model can produce more precise growth dynamics, both in the rapid growth 

stage and in its final phase.  

 

Maximum weight 

 The last part of the growth curve has a considerably different 

dynamic; the curve is neither smooth nor monotonic. There are two 

maximum animal weights, namely an individual one, and a species 

maximum one. They differ considerably, but only some phenotypes are 

biologically capable of reaching the species maximum weight.  

 Moreover, there is an inflection point on the growth trajectory 

between the two maximum weights. The inflection point suggests that the 

growth trajectory is modelled correctly, mathematically accurately, and 

biologically reasonable. At this inflection point, (Mxx|ip) the growth cessation 

stops and the growth process starts again.  

 Under the model conditions, the phenotypes, which are able to reach 

their individual maximum weight, go through a transformation in the growth 

mode. It means that on the growth trajectory Mx at the point (Mx, Zx, Kx, tx), 
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bifurcation takes place with two new growth trajectories to develop. On one 

trajectory (M→Mx→Mx|t1), animals continue to live up to 24,90 years, 

provided their individual maximum weight, Mx remains unchanged. On 

another trajectory (M→Mx→Mxx) phenotypes continue to grow to reach the 

species maximum weight, Mxx. What happens when the animals reach 

individual maximum weight is that the growth temporarily stops until a new 

growth mode is initiated, which takes the animal development on the next 

possible trajectory from that starting point. An important precondition for the 

growth to continue (Mx→Mxx) is an inflection point on the growth trajectory. 

The inflection point can be thought of as a point on a curve, where the 

growth trajectory qualitatively changes. It takes approximately three months 

for the species maximum weight growth trajectory before it passes through 

the inflection point, Mxx|ip. However, from the presented results it is difficult 

to deduce why growth stops, and starts after a while again, or how the 

growth mode has been changed; additional analyses is needed. The 

mechanism underlying growth dynamics regulation has been less well 

studied. There is little doubt that genes play an important part in the growth 

processes. However, little is known about how genes influence growth 

during development to shape animals of predetermined species-specific 

sizes.  

 

Growth variables 

 Animal current weight, M dynamics was modelled by parameter K, 

an invariant, and variable Z. Individual animal maximum weight, Mx is 

defined by parameter Kx and variable Zx; species maximum weight Mxx is 

modelled by the parameter Kx, Kxx and variable Zx, Zxx ensuring uniform 

modelling. variab 

 It suggests that parameter K and le Z are significant for modelling all 

stages of growth. Variable Z, a feed conversion coefficient, was not 

accounted for in theoretical studies. However, it not only provides a link with 

the microscopic levels of metabolic processes, but is also essential for 

modelling the dynamic of animal growth, and is indispensable to finding 

necessary facts. The model offers means for the direct calculation of Z. 

Although some calculations are possible, and some functional relations are 

clarified, the question about the animal weight balance equation is still open. 

This is partly due to the fact that the dynamic of variable Z is sparsely 

understood. From the model it follows that the closer Z is to unity, and the 

greater extent (∆Z< 0) the growth mode is developed to, the higher growth 

rate is. This seems reasonable; it is in line with feed conversion formal logic. 

However, equations (5) and (11) indicate the contrary. If in these equations Z 

is set equal to 1, a meaningless result is obtained. This suggests that the 

dynamic and functions of Z are more complicated than was expected. 
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Consider the result showing that there is no growth in the Zo range from Zo = 

2\3, ... 3\4, …up to Zo = 0,95, that corresponds to the weight range from mo 

to Mx, respectively. If this logic is followed, there should be minZ, 0<Z < 

2/3, that would indicate the level of animal body conversion in order to 

maintain organism functions under animal weight decrease conditions. A 

growing organism is an autonomous open system, and can probably maintain 

its optimal functions in many alternative ways. Summarising the section 

above it is possible to state that the maximum growth rate is achievable not 

only when Z tends to unity, but also under other, yet unknown conditions.  

 If Z is a difficult variable, then parameter K is more complicated. K is 

remarkably informative and useful, however with complex dynamics. I shall 

briefly explain the general concept of applying parameter K. There are two 

options to utilise information in an open, autonomous system. The first 

option is dynamical, which entails definitions of initial and boundary 

conditions that entirely determine the process. The second option is 

parametrical, which entails nonspecific initial conditions, and not 

informative boundary conditions, and can be applied to a dissipative system 

with a stable trajectory. In this case, dynamic and structure of the system are 

completely determined by the parameter. However, the parameter or 

parameters should be informative enough to manage the process. The model 

is an attempt to implement this approach. Parameter K and variable Z are 

regarded as the parameters, which determine an animal's growth in the 

course of its life span. Parameter K dynamic can be conditionally divided 

into two sets. One K set (K→Kx→Kxx) is associated with animal growth 

(m→ M→Mx→Mxx). These sets are tightly related to set (Z→Zx→Zxx). The 

second K set (K→Kx→Kxx→K1) is associated with animal longevity 

(t→tx→txx→t1). This suggests that K is sufficiently informative to model 

both longevity and growth. The above-mentioned sets are interrelated; 

however, the relation is not at all straightforward. Although there is 

insufficient understanding about dynamics of K and Z, these variables are 

essential for modelling and analysing animal growth. 

 

Species maximum weight phenotypes 

 Taking into consideration the above modelling results the following 

interpretation is proposed. If genetic determination of growth is denoted by 

the interaction of phenotypes YPG, the whole growth process, up to 

species maximum weight Mxx is obtained,  in terms of phenotype sets is 

given by YPG W, W ={ AA, Aa, aa }|M=Mxx, where W is an ordered set 

of asymptotic species maximum weight phenotypes { Mxx1, Mxx2, Mxx3 }, 

respectively. This interpretation is in agreement with dissipative systems 

theory saying that dynamical system phase trajectories that start from diverse 

initial points end up in a single attractor. Under the model conditions, this 
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attractor is the set W. This suggests that in an animal phenome, the number 

of body weight phenotypes asymptotically reduces to one set with three 

species maximum weight phenotypes, regardless of the initial distribution of 

phenotypes. This result is consistent with the general notion about growth 

genetics and supports the opinion that genetic determination of phenotype 

changes during individual growth (Houle et al. 2010). It is in line with 

notions about the genetics of animal development, however the results above 

imply that the hypothesis according to which the combined action of many 

genes with small effects explains quantitative traits development is not the 

only one to consider. It seems that a limited number of genes can explain the 

development of a quantitative trait well.  

 The study fails to answer the question as to what determines species 

or an individual animal maximum weight. Species maximum weight was 

found considering the individual maximum weight as a variable. The 

causation is direct; it is the individual maximum weight that entails 

information about species maximum weight. This implies that the biological 

information about species maximum weight is also present in those animal 

genomes, which never reach it.  

 

Pig longevity 

 Under the model conditions, pigs can reach the individual maximum 

weight, Mx = 600 kg in 6,40 years; species maximum weight, Mxx in 12,69 

years. Obtainable life span in the pig is 24,90 years, and species theoretical 

maximum longevity is 49,31 years. It suggests that most pigs can live barely 

longer than 25 years. This result is supported by field observations. There 

was only one reported case about a 27 year old pig (Hulbert et al. 2007). It 

follows from the model that the obtainable life span can be reached provided 

that the maximum individual weight Mx remains constant.   

 

Conclusion 

 The study suggests that both rapid growth and species maximum 

weight growth trajectories are phenotype dependant. The biological 

information about species maximum weight is also present in those animal 

genomes, which never reach it. 

 The phenotypes, which are able to reach their individual maximum 

weight, go through bifurcation in the growth mode with two new growth 

trajectories to develop.  

 Species maximum weight is represented by a set with 3 asymptotic 

phenotypes, and is 1205,88 kg, 1214,71 kg, or 1223,53 kg.  

 Most pigs live less than 25 years, and only few phenotypes can live 

longer.  
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 A modified discrete-time difference equation technique combined 

with standard continuum methods is an appropriate formalism to model 

ontogenetic growth in animals.   

 The results can be considered as boundary conditions in the 

differential equations representing the lower, metabolic level processes.  

 The details of growth causation turn out to be so complex, and 

nonlinear that no animal weight balance equation can be formulated at this 

stage. 
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