Spatio-Temporal Assessment of Shoreline Changes and Management of the Transgressive Mud Coast, Nigeria

  • Olusola Olalekan Popoola Department of Urban and Regional Planning, Federal University of Technology Akure, Nigeria
Keywords: Digital shoreline analysis system, inundation models, sea-level rise, shoreline change, shoreline management plan

Abstract

This study investigated changes due to erosion and the consequences of rising sea levels on the Transgressive mud coast of Nigeria using multispectral Landsat images and ALOS PALSAR (AW3D30) elevation models with the view of proffering a management strategy for a sustainable coast. Endpoint Rate (EPR) and Linear Regression Rate (LRR) techniques within the Digital Shoreline Analysis System (DSAS) were used to assess the rates of changes along the shoreline between 1986 and 2021. Inundation models were developed in line with sea-level rise scenarios of the Green House Gas emissions (SSP5-8.5) with GIS to assess sea-level rise’s impact on land and structures. Likewise, spatially disaggregated population and economic activity datasets projected to the year 2100 were overlaid on the inundation models to generate exposure indices for the coast. The study revealed that 49.8 km (64.67%) of the shoreline experienced retreat over the entire study period. This rapid rate of shoreline retreat has caused a land loss of 15.1 sq. km to the Atlantic over the last 35 years, which could trigger an additional 1.26 sq. km by the year 2032. Furthermore, the impact of sea-level rise is severe on the transgressive coast triggering submergence of the mud coast by inundation to the extent of 201 sq. km which will increase to 551 sq. km by 2100. Losses in terms of structures, population, and economic activity are recorded. To curtail the ongoing coastal changes, the study recommends the full adoption of the shoreline management plan (SMP) for sustainable shoreline management.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Aucelli, P. C., Di Paola, G., Rizzo, A., & Rosskopf, C. M. (2018). Present-day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic Coast: the case of Molise Region. Environmental Earth Sciences, 77(371). https://doi.org/10.1007/s12665-018-7535-y
2. Badru, G. B., Odunuga, S. S., Omojola, A. S., & Oladipo, E. O. (2022). Numerical modeling of sediment transport in the southwest coast of Nigeria: Implications for sustainable management of coastal erosion in the Bight of Benin. Journal of African Earth Sciences, 187, 1-13. https://doi.org/10.1016/j.jafrearsci.2022.104466
3. Becerra, M. J., Pimentel, M. A., De Souza, E. B., & Tovar, G. I. (2020). Geospatial of climate change perceptions on coastal regions: A systematic bibliometric analysis. Geography and Sustainability, 1(3), 209-219. https://doi.org/10.1016/j.geosus.2020.09.002
4. Cooper, N. J., Barber, P. C., Bray, M. J., & Carter, D. J. (2002). Shoreline management plans: a national review and engineering perspective. Water & Maritime Engineering, (pp. 221-228).
5. Dada, O. A., Agbaje, A. O., Adesina, R. B., & Asiwaju-Bello, A. Y. (2019). Effect of coastal land-use change on coastline dynamics along the Nigerian Transgressive Mahin mud coast. Ocean and Coastal Management, 168, 251-264. https://doi.org/10.1016/j.ocecoaman.2018.11.014
6. Dada, O. A., Almar, R., & Oladapo, M. I. (2020). Recent coastal sea-level variations and flooding events in the Nigerian Transgressive Mud coast of Gulf of Guinea. Journal of African Earth Sciences, 161, 1-10. doi:https://doi.org/10.1016/j.jafrearsci.2019.103668
7. Daramola, S., Li, H., Otoo, E., Idowu, T., & Gong, Z. (2022). Coastal evolution assessment and prediction using remotely sensed front vegetation line along the Nigerian Transgressive Mahin mud coast. Regional Studies in Marine Science, 50. https://doi.org/10.1016/j.rsma.2022.102167
8. DEFRA. (2006). Shoreline management plan guidance Volume 2: Procedures. London: DEFRA.
9. Ebisemiju, F. S. (1987). An evaluation of factors controlling present rates of shoreline retrogradation in the Western Niger Delta, Nigeria. CATENA, 14(1-3), 1-12. https://doi.org/10.1016/S0341-8162(87)80001-2
10. Environmental Agency. (2010). The coastal handbook. London. The Coastal Handbook (publishing.service.gov.uk)
11. Famuditi, T. O., Potts, J., & Bray, M. (2014). Towards effective public consultation and participation in Nigeria: lessons from shoreline management plans (SMPs) activities in England. International Letters of Natural Sciences, 15(1), 65-77.
12. Fashae, O. A., & Onafeso, O. D. (2011). Impact of climate change on sea-level rise in Lagos, Nigeria. International Journal of Remote Sensing, 32(24), 9811-9819.
13. Fatima, H., Arsalan, M. H., Khalid, A., Marjan, K., & Kumar, M. (2017). Spatio -Temporal Analysis of Shoreline Changes along Makran Coast Using Remote Sensing and Geographical Information System. Academia, 1-20.
14. Ferreira, Z. A., & Cabral, P. (2021). Vertical Accuracy Assessment of ALOS PALSAR, GMTED2010, SRTM and Topodata Digital Elevation Models. Proceedings of the 7th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2021) (pp. 116-124). SCITEPRESS. doi:10.5220/0010404001160124
15. Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35. https://doi.org/10.1016/j.rse.2013.08.029
16. French, G. T., Awosika, L. F., & Ibe, C. E. (1995). Sea-level rise and Nigeria: potential impacts and consequences. Journal of Coastal Research, 224-242.
17. Gesch, D. B., Gutierrez, B. T., & Gill, S. K. (2009). Coastal Elevations. In J. G. Titus, & D. R. K. E. Anderson, Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region (pp. 25-42). Washington DC: U.S. Environmental Protection Agency.
18. GLOSS. (2016, December). PSMSL. Retrieved November 3, 2020, from https://www.psmsl.org/products/gloss/glossmap.html
19. Griffiths, D., House, C., Rangel-Buitrago, N., & Thomas, T. (2019). An assessment of areal and transect-based historic shoreline changes in the context of coastal planning. Journal of Coastal Conservation, 23, 315-330. https://doi.org/10.1007/s11852-018-0661-6
20. Ihenyen, A. E. (2003). Recent sedimentology and ocean dynamics of the Western Nigerian continental shelf and coastline. Journal of African Earth Sciences, 36(3), 233-244. https://doi.org/10.1016/S0899-5362(02)00153-7
21. International Institute for Applied Systems Analysis. (2009). Retrieved from http://www.iiasa.ac.at/web-apps/tnt/RcpDb
22. IPCC. (2019). Summary for Policymakers. In H. O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, . . . N. M. Weyer, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 1-35). In press.
23. IPCC. (2021). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, . . . B. Zhou, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-41). Cambridge University Press. In Press.
24. Kankara, R. S., Selvan, C., Markose, V. J., Rajan, B., & Arockiaraj, S. (2015). Estimation of long and short-term shoreline changes along Andhra Pradesh coast using Remote Sensing and GIS techniques. Procedia Engineering, 116, 855-862. DOI: 10.1016/j.proeng.2015.08.374
25. Kay, R., & Alder, J. (2005). Coastal Planning and Management (2nd ed.). London: Routledge Taylor & Francis.
26. Kayode, O., & Koya, O. (2019). Wave energy potential along the Gulf of Guinea coast of Nigeria. Applied Engineering Letters, 4(4), 128-135.
27. Komolafe, A. A., Apalara, P. A., Ibitoye, M. O., Adebola, A. O., Olorunfemi, I. E., & Diallo, I. (2021). Spatiotemporal Analysis of Shoreline Positional Change of Ondo State Coastline Using Remote Sensing and GIS: A Case Study of Ilaje Coastline at Ondo State in Nigeria. Earth Systems and Environment, 1-13. https://doi.org/10.1007/s41748-021-00270-1
28. Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S., . . . Strauss, B. H. (2017). Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth's Future, 5(12), 1217-1233. doi:https://doi.org/10.1002/2017EF000663
29. Koroglu, A., Ranasinghe, R., Jiménez, J. A., & Dastgheib, A. (2019). Comparison of Coastal Vulnerability Index applications for Barcelona Province. Ocean and Coastal Management, 178, 1-13. https://doi.org/10.1016/j.ocecoaman.2019.05.001
30. Leatherman, S. P. (2018). Coastal Erosion and the United States National Flood Insurance Program. Ocean & Coastal Management, 156, 35-42. https://doi.org/10.1016/j.ocecoaman.2017.04.004.
31. Mentaschi, L., Vousdoukas, M., Pekel, J., Voukouvalas, E., & Feyen, L. (2018). Global long-term observations of coastal erosion and accretion. Scientific Reports, 12876. https://doi.org/10.1038/s41598-018-30904-w
32. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517-1520. doi:10.1126/science.1185782
33. Olajide, A., Popoola, O. O., & Otokiti, K. V. (2020). Ecosystem Cover Dynamics and its Implications in the Coastal Zone of Ondo State, Nigeria. Ecologia, 10(2), 50-62. DOI:DOI:10.3923/ecologia.2020.50.62
34. Olajide, A., & Popoola, O. O. (2020). Impact of degradation of mangrove forest to human well-being in the Ondo coastal zone, Nigeria. In B. O. Agbeja, A. C. Adetogun, O. V. Oyerinde, J. A. Olusola, & O. S. Olaniran (Ed.), Proceedings of The 3rd Commonwealth Forestry Association (CFA) Conference, Nigeria Chapter, Federal University of Technology, Akure (pp. 354-361). Akure: Commonwealth Forestry Association.
35. Olajuyigbe, A. E., Adegboyega, S. A., Popoola, O. O., & Olalekan, O. A. (2015). Assessment of urban land use and environmental sensitive area degradation in Akure, Nigeria using Remote Sensing and GIS techniques. European Scientific Journal, 11(29), 318-339.
36. Olokeogun, O. S., Ayanlade, A., & Popoola, O. O. (2020). Assessment of riparian zone dynamics and its flood-related implications in Eleyele area of Ibadan, Nigeria. Environmental Systems Research, 9(6), 1-11. doi:https://doi.org/10.1186/s40068-020-00167-4
37. Olorunlana, F. A. (2013). State of the environment in the Niger Delta area of Ondo State. European Scientific Journal, 9(21), 351-357. https://doi.org/10.19044/esj.2013.v9n21p%p
38. Oyedotun, T. D. (2015). Decadal Shoreline Changes in the Muddy Coastline of Ondo State, Nigeria. Cinq Continents, 5(12), 219-230.
39. Ozyurt, G., & Ergin, A. (2010). Improving Coastal Vulnerability to Sea-Level Rise: A New Indicator-Based Methodology for Decision Makers. Journal of Coastal Research, 26(2), 265-273. https://doi.org/10.2112/08-1055.1
40. Pendleton, E. A., Thieler, E. R., & Williams, S. J. (2004). Coastal Vulnerability Assessment of Padre Island National Seashore (PAIS) to Sea-Level Rise. (U.S. Geological Survey Open-File Report 2004-1090). United States Geological Survey. https://pubs.er.usgs.gov/publication/ofr20041090
41. Popoola, O. O. (2012). Sea Level Rise and Sustainability of the Nigerian Coastal Zone. Plymouth: University of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/handle/10026.1/907?show=full
42. Popoola, O. O. (2014). Vulnerability of the Nigerian coast to inundation consequent on sea-level rise. Journal of Engineering and Environmental Studies, 5(1), 25-38.
43. Popoola. O. O.(2021). Spatiotemporal assessment of Modifications to Coastal Marshes along the Deltaic Coast of Nigeria. Journal of Sustainable Technology, 11(2), 165-180.
44. Popoola, O. O., Olajide, A., & Ajayi, D. B. (2018). Ecosystem Services Assessment for Human Well-Being and Poverty Alleviation in the Ondo State Coastal Region, Nigeria. In O. B. Akinbamijo., E. E. Okoko., F. K. Omole, & O. O Popoola, O. O. (Eds.), The Just City: Poverty, Deprivation and Alleviation Strategies (pp. 96-113). Akure, Nigeria. Akure, Nigeria: URP, FUTA.
45. Ranasinghe, R., Callaghan, D., & Stive, M. (2012). Estimating coastal recession due to sea-level rise: Beyond the Bruun Rule. Climate Change, 110(3-4), 561-574.
46. Santillana, J. R., & Makinano-Santillana, M. (2016). Vertical Accuracy Assessment of 30-M Resolution ALOS, ASTER, and SRTM Global DEMs Over Northeastern Mindanao, Philippines. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, (pp. 149-156). https://doi.org/10.5194/isprs-archives-XLI-B4-149-2016, 2016
47. Tadono, T., Takaku, J., Tsutsui, K., Oda, F., & Nagai, H. (2015). Status of “ALOS World 3D (AW3D)” global DSM generation. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015, (pp. 3822-3825). doi:10.1109/IGARSS.2015.7326657
48. Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea level rise. Scientific Reports, 7, 1399. doi:https://doi.org/10.1038/s41598-017-01362-7
49. Wong, T. E., Bakker, A. M., & Keller, K. (2017). Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defence. Climate Change, 144, 347-364. https://doi.org/10.1007/s10584-017-2039-4
Published
2022-06-30
How to Cite
Popoola, O. O. (2022). Spatio-Temporal Assessment of Shoreline Changes and Management of the Transgressive Mud Coast, Nigeria. European Scientific Journal, ESJ, 18(20), 99. https://doi.org/10.19044/esj.2022.v18n20p99
Section
ESJ Humanities