Effects of Water Stress on the Agromorphological Parameters of Two New Maize (Zea mays L.) Lines (L36 and L71) Obtained from the Variety EV8728
Abstract
Maize (Zea mays L.) or Indian wheat is the most cultivated cereal in the world and the first in terms of quantity before wheat. Its cultivation is confronted with the climate change which causes drought, and this last one reduces considerably its production. The objective of this experiment is to select maize (Zea mays L.) varieties resistant to water stress using gamma irradiation. Its aim is to characterize agromorphologically two maize lines derived from the gamma irradiated variety EV8728. This study took place in Daloa (Ivory Coast). The plant material consisted of maize plants obtained by self-fertilization after five cycles from seeds of the variety EV8728 irradiated with gamma rays at a dose of 300 grays. Observations and measurements were made on the number and area of leaves, height and diameter of maize plants, male and female flowering parameters (date of panicle appearance, pollen grains, cob and silks) and number of spikelets, cob insertion height (CIE), panicle height and internode length. At the 58th das, the highest number of leaves (18.76) was observed in the plants of line 36 watered at capacity in field S0. On the other hand, the number of leaves (16.04) was lowest on the plants of the same line under severe stress (S2). Regardless of the type of stress applied, the plants of the control EV8728 always dominate, while the most stunted are those of the line L36. The date of panicle appearance (DAP) was early with the EV8728 control compared to the tested lines (L36 and L71), while the date of pollen appearance (DAGP) was about 4 d after the panicle was visible. Under moderate stress, a delay in flowering (anthesis) is observed in EV8728 and line L71 while there is no change in date for line L36.
Downloads
Metrics
PlumX Statistics
References
2. AfDB. (2020). Maize production in Africa: 23 million tonnes deficit per year - Economiste (https://leconomistebenin.com). Accessed on 23/12/2020 at 6:05 p.m.7.
3. Attia, F. (2007). Effect of water stress on the ecophysiological behavior and the phenological maturity of the vine (Vitis vinifera L.): Study of five native grape varieties of Midi-Pyrénées. INP thesis, Toulouse (France), 194p.
4. Aussenac, G., & Finkelsten, D. (1983). Influence of drought on growth and cedarphotosynthesis. Annals of Forest Scientists, 40(1), 67-77. ffhal-00882295f
5. Beniken L., Beqqali, M., Dahan, R., Benkirane, R., Omari, F. E., Benazouz, A., & Benyahia, H., (2011). Evaluation of the resistance of tentristeza-resistant citrus rootstocks to water deficit. Fruit, 66 (6). pp: 373-384. https://doi.org/10.1051/fruit/2011053
6. Berka, S., & Aïd, F. (2009). Physiological responses of Argania spinosa (L.) Skeels plants subjected to an edaphic water deficit. Drought, 20(3), 296-302. DOI:10.1684/sec.2009.0191
7. Chafai, S. (2012). Etude de l’effet du stress hydrique sur une collection de lignée de Medicago truncatula. Thèse. Ecole Nationale Supérieure Agronomique El-Harrach, Alger. 63-64 pp. http://hdl.handle.net/123456789/157
8. Charcosset, A., & Gallais, A. (2009). Emergence et développement du concept de variétéshybrides chez le maïs. ‘’Le Sélectionneur Français’’. UMR Génétique Végétale. INRAUniversité de Paris-Sud-CNRS Agro Paris Tech Ferm du moulin 91190 GIF/YVETTE, 60 :21-30.
9. Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551–560. https://doi.org/10.1093/aob/mcn125
10. CNRA. (2006). Cultivating maize well in Ivory Coast, 4p.
11. Diallo, M. D., Aïchatou, T., Fatou, D. M., Mahamat-Saleh, M., Goalbaye, T., Ahmadou, B. N., Nafi, D. N., Aliou, D., & Aliou, G. 2016. Determination of the optimal dose of mineral fertilizer 15-15-15 on five (5) varieties of sweet corn (Zea mays L. ssp. Saccharata) in Senegal. European Scientific Journal september 2016 edition vol 12 (27): 1857-7881. http://dx.doi.org/10.19044/esj.2016.v12n27p135
12. Dié, K. P. (2006). Reinforcement of the drinking water supply of the city of Daloa from the Buyo dam in IvoryCoast, end of training dissertation, 77 p http://documentation.2ie-edu.org/cdi2ie/opac_css/doc_num .php?explnum_id=981
13. Doucet, R., & Soenen, B. (2016). Threeyears of trials assessed the influence of water stress on seed corn. Effects on yield and its components, as well as on plant physiology, werethus quantified. ARVALIS-Plant Institute. 438.48-49.https://www.perspectives-agricoles.com/file/galleryelement/pj/df/26/a3/ee/438
14. Ducroquet, H., Tillie, P., Louhichi, K., & Gomez-Y-Paloma, S. (2017). Agriculture in Ivory Coast under the magnifying glass. State of play of plant and animal production sectors and review of agricultural policies. JRC Science for policy report 244 p. PDF ISBN 978-92-79-73180-8 ISSN 1831-9424 https://ec.europa.eu/jrc doi:10.2760/126254
15. El-Zohiri, S. S. M., & Abd, El-Aal, A. M., H. (2014). Improve the adverse impacts of water stress on growth, yield and its quality of taro plants by using glycine betaine, MgC03 and defoliation under delta conditions, Middle East Journal of Agriculture Research, 3 (4) : 2077-460.https://www.curresweb.com/mejar/mejar/2014/799-814.pdf
16. FAO. (2016). Produce more withless in maize-rice-wheat practice. Guide to sustainable grain production. Rome http://www.fao.org/3/i4009f/i4009f.pdf(consulted on 06/08/2020 at 17:06).
17. FAO. (2021). FAO Cereals Supply and Demand Bulletin. https://www.FAO.Org/worldfood (consulted on 17/12/2021 at 23:35)
18. Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheeman, M. A., & Khaliq, A. (2008). Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J. Agron. CropSci., 194: 325–333.https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-037X.2008.00323.x
19. Fonseca, E. A., & Westgate, M. (2005). Relationship betweendesiccation and viability of maize pollen. Field CropsResearch 94 (2) : DOI:10.1016/j.fcr.2004.12.001
20. Gnofam, N., Tozo, K., Bonfoh, B., Akantetou, K. P., Kolani, L., & Amouzouvi, K. (2014). Effects of water deficit on certain morphological, physiological and yield parameters in cotton (Gossypium hirsutulm L. CV STAM129A) grown in Togo. Togolese Institute of Agronomic Research (ITRA), Wet Savannah Research Center (CRA-SH), National Cotton Program (PNC). African Agronomy 26 (2): 113-125 pp.
https://www.ajol.info/index.php/aga/article/view/107195
21. Goalbaye, T., Diallo, M. D., Madjimbé, G., Mahamat, S. M., & Guissé, A. (2017). Codification and morphological characterization of local varieties of corn (Zea mays L.) of Chad in way of extinction. International Journal of Development Research vol.7, issue, 01 pp. 10897-10901.
https://www.researchgate.net/publication/313166918_CODIFICATION_AND_MORPHOLOGICAL_CHARACTERIZATION_OF_THE_LOCAL_VARIETIES_OF_CORN_ZEA_MAYS_L_OF_CHAD_IN_WAY_OF_EXTINCTION
22. Goalbaye, T., Guissé, A., & Tissou, M. (2014). Improved, drought-adapted maize populations for low-rainfall areas of Chad. Intro J. Biolchemsci 7(6):2275-2282.https://www.ajol.info/index.php/ijbcs/article/view/103471
23. Harou, A., Hamidou, F., & Bakasso, Y. (2018). Morpho-physiological and agronomic performance of cowpea [Vigna unguiculata (L.) Walpers] under water stress conditions. Journal of Applied Biosciences 128: 12874-12882.
https://www.ajol.info/index.php/jab/article/view/181637/171027
24. Hénin, F. (2019). Maize export 2019-2020, five countries share a market of 163 million tonnes. https://wikiagri.fr/articles/export-de-mais-2019-2020-cinq-pays-se-partagent-un-marche-de-163-millions-de-tonnes/20266
25. Hopkins, W. G. (2003). Plant physiology. Edition De Boeck University, 514 p.
https://www.deboecksuperieur.com/ouvrage/9782744500893-physiologie-vegetale
26. Kasongo, L. M. E., Banzra, M. J., Meta T. M., Mukoke, T. H., Kanyenga, F., Mayamba, M. G., Mwamba, K. F,. & Mazinga, K. M. (2019). Sensitivity of rainfed maize (Zea mays L.) cultivation to the effects of dry spells on a Ferralsol under humus amendment in Lubumbashi. Journal of Applied Biosciences 140: 14316-14326 ISSN 1997-5902. http://dx.doi.org/10.4314/jab.v140i1.10
27. Lauer, J. (2005). What happens to the corn plant in dry weather? University of Wisconsin in Madison, 4 p.
28. Lebon, E. (2006). Effect of the water deficit of the vine on the functioning of the canopy, the development of the yield and the quality. INERA Sup Agro, UMR, Laboratory of Ecophysiology of Plants under Environmental Stress, 4 p. https://scholar.google.com/scholar?cites=2951948446005502097&as_sdt=2005&sciodt=0,5&hl=fr
29. Ligban, R., Goné, D. L., Kamagaté, B., Saley, B. M., & Biémi, J. (2009). Hydrogeochemical processes and origin of natural springs in the square degree of Daloa (Central West of Ivory Coast). International Journal of Biological and Chemical Sciences, 3 (1): 38-47.https://doi.org/10.4314/ijbcs.v3i1.42733
30. Lowlor, D., & Cornic, W. (2002). Photosyntic carbon assimilation and associeted metabolism in relation to water deficit in higher plant cell. Environ; 25 : 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
31. Luquet, D., Vidal, A., Dauzat, J., Bégué, A., Olioso, A., & Clouvel, P. (2004). Using directional TIR measurements and 3D simulations to assess the limitations and opportunties of water stress indices. Remonte sensing of environnement, 90, 53-62. https://doi.org/10.1016/j.rse.2003.09.008
32. Macovei, A., Garg, B., Raikwar, S., Balestrazzi, A., Carbonera, D., Buttafava, A., Bremont, J. F. J., Gill, S. S., & Tuteja, N. (2014). Synergistic exposure of rice seeds to different doses of -ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of tc-ner pathway. Bio Med Research International. 676934. 1-15.
33. Mokhtarpour, H., Teh, C. B. S., Saleh, G., Selamat, A. B., Asadi, M. E., & Kamkar, B. (2010). No destructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Communications in Biometry and Crop Science, 5(1): 19-26.
https://www.researchgate.net/publication/44259918_Non destructive_estimation_of_maize_leaf_area_fresh_weight_and_dry_weight_using_leaf_length_and_leaf_width
34. Naitormmbaidé, M., Djondang, K., Mama, V. J., & Koussou, M. (2015). Screening of some varieties of maize (Zea mays L.) for resistance to Striga hermonthica (Del) Benth in the Chadian savannas. Journal of animal and plant sciences. Pp 3722-3732. https://www.m.elewa.org/JAPS/2015/24.1/4.pdf
35. N’guessan, A. H., N’guessan, K. F., Kouassi, K. P., Kouamé, N. N., & N’guessan, P. W., 2014. Population dynamics of the cocoa stem borer, Eulophonotus myrmeleon Felder (Lepidoptera: Cossidae) in the Haut-Sassandra region of Ivory Coast. Journal of Applied Biosciences 83: 7606-7614. https://doi.org/10.4314/jab.v83i1.11
36. Nuss, E. T., & Tanumihardjo, S. A. (2011). Quality protein maize for Africa: Closing the protein inadequacy gap vulnerable populations. Advances in Nutrition 2 (3); 217-224. DOI:10.3945/an.110.000182
37. OECD/FAO. (2015). OECD and FAO, Agricultural outlook 2015-2024. http: //www.fao;org/3/a-i4738f.pdf. (consulted on 17/12/2021 at 23:35)
38. Ouiam, L, Said, O, & Jean, F. L. (2002). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie. 23 (2003): pp. 257-268.
https://dx.doi.org/10.1051/agro:2002089
39. Patel, N. R., Mehta, A. N., & Shekh, A. M. (2001). Canopy Temperature and Water Stress Quantification in Rainfed Pigeonpea (Cajanus cajan (L.) Mill sp.). Agricultural and Forest Meteorology, 109, 223-232.
https://ui.adsabs.harvard.edu/link_gateway/2001AgFM..109..223P/doi:10.1016/S0168-1923(01)00260-X
40. Razmjoo, K. Heydarizadeh, P., & Sabzalian, M. R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. Int. J. Agric.Biol., 10: 451–454.
https://www.researchgate.net/journal/International-Journal-of-Agriculture-and-Biology-1814-9596
41. Reynolds M. & Tuberosa R., 2008. Translational research impacting on crop productivityin drought-prone environments. Curr. Opin. Plant Biol., 11:171–179. https://doi.org/10.1016/j.pbi.2008.02.005
42. Semassa, J. A., Padonou, W. S.; Anihouvi, B. V., Akissoé, H. N., Aly, D., Adjanohoun, A., & Baba-Moussa, L. (2016). Varietal diversity, quality and use of maize in West Africa. European Journal of Scientific Research 12(18): 1857-7881. Pp 197-217.
http://dx.doi.org/10.19044/esj.2016.v12n18p197
43. Sengupta, M., Chakraborty, A., & Raychaudhuri, S. S., 2013. Ionizing radiation induced changes in phenotype, photosynthetic pigments and free polyamine levels in Vigna radiat (L.) Wilczek. Applied Radiation Isotopes. 75. 44-49.
https://doi.org/10.1016/j.apradiso.2013.01.036
44. Soro, D., Ayolié, K., Gohi, Bi Z. F., Yao, Y. F., Konan-Kan, K. H., Sidiky, B., Téhua, A. P., & Yatty, K. J. (2015). Impact of organic fertilization on maize (Zea mays L.) production in a ferralitic soil of centre west côte d'ivoire, Journal of Experimental Biology and Agricultural Sciences, 3(6) : 556-565.
http://dx.doi.org/10.18006/2015.3(6).556.565
45. Thompson, J. A., & Chase, D. L. (1992). Effect of limited irrigation on growth and yield of asemi-dwarf wheat in Southern New Wales. Australian Journal of Experimental Agriculture 32 (6) 725 – 730.https://doi.org/10.1071/EA9920725
46. Winkel, W., & Hudde, H., (1997). Long-term trends in reproductive traits of tits (Parus major, P. caeruleus) and pied flycathers Ficedula hypoleuca. Journal of avianbiology, 187-190. https://doi.org/10.2307/3677313
47. Wopereis, M. C. S., Kropff, M. J., Maligaya, A. R., & Tuong, T. P., 1996. Drought-stress resonses of two lowlandrice cultivars to soil water status. Field Crops Research, 46, 21-39. https://doi.org/10.1016/0378-4290(95)00084-4
48. Yuan, G., Luo, Y., Sun, X., & Tang, D. (2004). Evaluation of a crop water stress index for detecting water stress in winterwheat in the north china plain. Agricultural Water Management 64(1) : 29-40.
https://doi.org/10.1016/S0378-3774%2803%2900193-8
Copyright (c) 2022 François Zaouli Néné-bi, Louise Turquin, Séraphin Kouakou Konan, Dogniméton Soro, Koutoua Ayolie, Clotaire Edja Bléhou, Justin Yatty Kouadio
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.