Germination Stage Screening of Mutants of Cowpea (Vigna unguiculata L. Walp) to Salinity Tolerance

  • Ndeye Fatou Deme Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Sénégal
  • Mouhamadou Moussa Diangar Institut Sénégalais de Recherches Agricoles (ISRA), ISRA CNRA de Bambey, Member of the Center of Excellence of CERAAS, Thies, Senegal
  • Mohd Yusuf Rafii Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
  • Mame Arama Fall-Ndiaye Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Sénégal
  • Tahir Abdoulaye Diop Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Sénégal
Keywords: Cowpea mutants, NaCl tolerance, Germination


To test the tolerance of cowpea mutants to salinity, cowpea wilds and mutants were subjected to 50, 100, 150, 200, and 250 mM NaCl to test for tolerance to salinity. Genotype and salt concentration interaction were significant. GxS explained mostly the variation observed. More informative salt concentrations were found in 50 mM (99.08) and C100 mM (72.50) against 26.80 in the control environment. High salt concentrations had the lowest germination rates. Seed germination rate of cowpea genotypes decreased from 56.46 to 20.58 with a mean of 36.28 and a variance of 99.08. Despite strong correlations observed between indices, very weak ones were found between AD and STI, -0.02, -0.44, -0.7, -0.79 and -0.84 respectively at salt concentration of 50, 100, 150, 200 and 250. Mouride wild types were most tolerant to salt with a germination rate of 43 % at 50 mM versus 48 and 551 % for respectively Melakh and Yacine. Six (6) mutants were more tolerant to the weakest checks performance which was the 9th best performance.


Download data is not yet available.


Metrics Loading ...

PlumX Statistics


1. Ashraf, M. & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216.
2. Batabyal, S., Dalal, T. & Tah, J. (2014). Effect of different seed-sources on germination parameters by means of artificial seed germination of Santalum album L. Int. J. Pure App. Biosci. 2 (2): 149-152.
3. Benidire, L., Daoui, K., Fatemi, Z. A., Achouak, W., Bouarab, L., & Oufdou, K. (2015). Effect of salt stress on germination and seedling of Vicia faba L. Journal of Materials and Environmental Science, 6(3), 840–851.
4. Bose, J., Rodrigo, M. A. & Shabala , S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot. doi:10.1093/jxb/ert430.
5. da Silva Sá, F.V., de Lima, G. S., dos Santos, J. B., Gheyi, H. R., dos Anjos Soares, L. A., Cavalcante, L. F., de Paiva, E. P. & de Pádua Souza, L. (2016). Growth and physiological aspects of bell pepper (Capsicum annuum) under saline stress and exogenous application of proline. African Journal of Biotechnology, 15: 1970-1976. DOI: 10.5897/AJB2016.15441.
6. Dangue, A., Gueye, N., Diallo, A. T., Sare, I. C., Fall-Ndiaye, M. A. & Diop, T. A. (2020). Effet de la salinité sur la germination graines et la croissance des semis de treize cultivars africains de sésame (Sesamum indicum L.). European Scientific Journal Vol.16, No.15.
7. Etesami, H. & Noori, F. (2019). Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. In: Kumar M., Etesami H., Kumar V. (eds) Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore.
8. FAO (2014a). Committee on World Food Security (CFS). Accessed 2 Nov 2014 .
9. FAO/IAEA (2018). Manual on Mutation Breeding - Third edition. Spencer-Lopes,
10. Farissi, M., Ghoulam, C. & Bouizgaren, A. (2013). Changes in water deficit saturation and photosynthetic pigments of Alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric. Sci. Res. J.;3:29–35. [Google Scholar].
11. González, L.M. (1996). Use of radioinduction of mutations in obtaining salinity-tolerant rice genotypes . PhD diss.(In Spanish), Granma.
12. Gupta, B. & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular Characterization. Int J Genomics. doi:org/10.1155/2014/701596.
13. Haleem, A. & El-Shaieny, A.H. (2015). Seed germination percentage and early seedling establishment of five Vigna unguiculata (L.) Walp. genotypes under salt stress. European Journal of Experimental Biology, 5: 22–32.
14. IAEA (2004). Directory of Gamma Processing Facilities in Member States. Available at: Processing-Facilities-in-Member-States.
15. Kaymakanova, M. (2009). Effect of salinity on germination and seed physiology in Bean (Phaseolus Vulgaris L.). XI Anniversary Scientific Conference, pp: 326-329.
16. Kebede, E. & Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia, Cogent Food & Agriculture, 6:1,
DOI: 10.1080/23311932.2020.1769805.
17. Kendirli, B., Cakmak, B. and Ucar, Y. (2005). Salinity in the South eastern Anatolia Project (GAP), Turkey: Issues and Options. Irrigation and Drainage, 54: 115-122.
18. Mba, C. (2013). Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture", Agronomy, 3, p. 200-231.
19. Ndiaye, M.A.F. (2015). Cowpea [Vigna unguiculata L. (Walp)]: Varietal selection assisted by the measurement of the amount of fixed nitrogen using 15N isotope techniques and by molecular tools. State PhD in Plant Biology : UCAD Dakar 119 pages.
20. Olufajo, O. O. (2012). Agronomic Performance of improved cowpea varieties under natural 131 infestation with Alectra vogelii (Benth.) in the northern Guinea savannah of Nigeria. Agri. Tropic. Subtropic. 45(2):66–71.
21. Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. & Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB PLANTS, 6, plu047.
22. Parida, A. K., Das A. B. & Mohanty, P. (2004). Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42:213–226.
23. Praxedes, S. C., Damatta, F. M., Lacerda, C. F.D., Prisco, J.T. & Filho, E.G. (2014). Salt stress tolerance in cowpea is poorly related to the ability to cope with oxidative stress. Acta Botanica Croatica, 73: 51–62.
24. Ravelombola, W. S. (2017). Evaluation and Association Analysis of Cowpea Salt Tolerance. Theses and Dissertations. 1966.

25. Rodrigues, P., Monteiro, A. & Lourenço, V. (2015). A Robust AMMI model for the analysis of genotype-by-environment data. Bioinformatics (Oxford, England). 32. 10.1093/bioinformatics/btv533.
26. Rosielle, A.A. & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and nonstress environments. Crop Science, 21:943-946.
27. Saad, F.F., Abd El-Mohsen, A.A., Abd, M.A. & Al-Soudan, I.H. (2014). Effective selection criteria for evaluating some barley crosses for water stress tolerance. Adv. Agric. Biol. 1(3):112–123. doi:10.15192/PSCP.AAB.2014.1.3.112123.
28. Spencer-Lopes, M.M., Forster, B.P. & Jankuloski, L. (2018). Food and Agriculture Organization of the United Nations. Rome, Italy. 301 pp.
29. Taffouo, V., Meguekam, L., Kenne, M., Yayi, E., Magnitsop, A., Akoa, A. & Ourry, A. (2009). Germination et accumulation des métabolites chez les plantules de légumineuses cultivées sous stress salin. Agron. Afr ;20:129–139. doi: 10.4314/aga.v20i2.1742.
30. Timko, M.P., Ehlers, J. D. & Roberts, P.A. (2007). Cowpea. In: Genome Mapping and Molecular Breeding in Plants, Kole, C. (Ed.). Vol. 3, Springer Verlag, Berlin, Germany, ISBN-13: 978-3540345350, pp: 49-67.
31. Tiwari, J. K., Munshi, A. D., Kuma, R., Pandey, R. N., Arora, A., Bhat, J.S. & Sureja, A.K. (2010). Effect of salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol. Plant, 32: 103-114.
32. Tsague, E.L., Kouam, E.B. & Tankou, C.M. (2017). Salinity tolerance at germination of some main cultivated cowpea (Vigna unguiculata) genotypes from Western Cameroon. Annals of Plant Sciences, 6: 1634–1639.
33. Verdcourt, B. (1970). Studies in the leguminosae-papilionoïdeae for the flora of tropical East Africa. Kew Bull. 24 (3): 507–569.

34. Wu, G.Q., Jiao, Q. & Shui, Q.Z. (2015). Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.) Plant Soil Environ. Vol. 61, No. 5: 220–226.
35. Zhang, H. J., Dong, H. Z., Li, W. J. & Zhang, D.M. (2012). Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. J Agron Crop Sci 198(1): 27–37.
How to Cite
Deme, N. F., Diangar, M. M., Rafii, M. Y., Fall-Ndiaye, M. A., & Diop, T. A. (2022). Germination Stage Screening of Mutants of Cowpea (Vigna unguiculata L. Walp) to Salinity Tolerance. European Scientific Journal, ESJ, 18(30), 73.
ESJ Natural/Life/Medical Sciences

Most read articles by the same author(s)