Distribution and Carbon Sequestration Potential of Cola Laurifolia Mast.: A Dominant Native Riparian Species Along Permanent Rivers in Sub-Saharan Africa

  • Gouwidida Elice Kabore Laboratory of Plant Biology and Ecology, University Joseph Ki-Zerbo
  • Philippe Bayen Laboratory of Plant Biology and Ecology, University Joseph KI-ZERBO
  • Sizabda Djibril Dayamba African Forest Forum, Nairobi, Kenya
  • Adjima Thiombiano Professor, University Joseph KI-ZERBO, Laboratory of Plant Biology and Ecology, Ouagadougou, Burkina Faso
Keywords: Allometry, aboveground biomass; Burkina Faso; species distribution; Mouhoun River

Abstract

Species-specific models for estimating aboveground biomass (AGB) are the accurate means of quantifying species’ carbon pools. Cola laurifolia Mast., a dominant and multi-purpose riparian species along the Mouhoun River in Burkina Faso have a regressive population. Few scientific studies exist concerning this riparian species population and carbon stock capacity. This study aims to allow this gap by formulating a species-specific allometric model for assessing with direct method for Cola laurifolia leave, branches, stem and whole AGB. Parameters used to perform models are tree diameter at breast height (DBH), basal diameter at 20 cm (D20), height (H), and mean crown diameter (CD) using data from 30 trees. Population structure shows a low regeneration potential at all of the studied river zones (i.e. upstream, intermediate and downstream zones). The carbon stock was found to be 54.14 kg C tree-1 and 9.24 Mg C. ha-1. The density of C. laurifolia was higher in downstream zone, and consequently the carbon stock was higher in these areas. The log-log linear model is the best-fitted form incorporated DBH and H as predictors. This form is best fitted for the three tree components (i.e. leaves, branches, stem) and the AGB. The AGB model is more accurate with high coefficient of determination and low RSE (R²=0.92; RSE=0.28) contrasted with leaves models. The global model has the best goodness of fit because of a low relative error (-0.213 %) compared to the use of three component models. The accuracy of our species-specific model confirms the need to develop such models for greater accuracy in AGB estimations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Arbonnier, M. (2019). Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest (Quae). https://www.quae.com/produit/1554/9782759225484/arbres-arbustes-et-lianes-d-afrique-de-l-ouest
2. Barbault, R., & Chevassus-au-Louis, B. (2005). Biodiversité et crise de croissance des sociétés humaines: l’horizon 2010. Biodiversité et Changements Globaux: Enjeux de Société et Défis Pour La Recherche, April, 8–23.
3. Basuki, T. M., Laake, P. E. Van, Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257, 1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027
4. Bayen, P. (2016). Restauration des sols dégradés par afforestation et évaluation des potentialités de séquestration du carbone de six espèces ligneuses en zones sahélienne et soudano-sahélienne du Burkina Faso. Université Ouaga I PR Joseph KI-ZERBO.
5. Bayen, P., Bognounou, F., Lykke, A. M., Ouédraogo, M., & Thiombiano, D. (2015). The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso. Environment, Development and Sustainability, 7(1). https://doi.org/10.1007/s10668-015-9631-4
6. Bayen, P., Noulèkoun, F., Bognounou, F., Lykke, A. M., Djomo, A., Lamers, J. P. A., & Thiombiano, A. (2020). Models for estimating aboveground biomass of four dryland woody species in Burkina Faso, West Africa. Journal of Arid Environments, 180(2019). https://doi.org/10.1016/j.jaridenv.2020.104205
7. Bebber, D. P., & Butt, N. (2017). Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-14467-w
8. Bondé, L., Ganamé, M., Ouédraogo, O., Nacoulma, B. M., Thiombiano, A., & Boussim, J. I. (2017). Allometric models to estimate foliage biomass of Tamarindus indica in Burkina Faso. Southern Forests: A Journal of Forest Science, 1–8. https://doi.org/10.2989/20702620.2017.1292451
9. Brown, S., Schroeder, P., & Birdsey, R. (1997). Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecology and Management, 96, 37–47.
10. Castilho, C. V. De, Magnusson, W. E., Aaujo, R. N. O. de, Luizao, R. C. C., Luizao, F. J., Lima, A. P., & Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management, 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024
11. Chavan, B. L., & Rasal, G. B. (2011). Potentiality of Carbon Sequestration in six year ages young plant from University campus of Aurangabad. Global Journal of Researches in Engineering, 11(7). https://doi.org/ISSN 2249-4596
12. Chave, A. J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T., Chave, J., Andalo, C., Brown, S., … Riéra, B. (2005). Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests Tree allometry and improved estimation and balance in tropical forests of carbon stocks. Ecology, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
13. Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
14. Daba, D. E., & Soromessa, T. (2019). The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: Case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance and Management, 14(1), 1–13. https://doi.org/10.1186/s13021-019-0134-8
15. Dayamba, S. D., Djoudi, H., Zida, M., Sawadogo, L., & Verchot, L. (2016). Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso, West Africa. “Agriculture, Ecosystems and Environment,” 216, 61–72. https://doi.org/10.1016/j.agee.2015.09.023
16. Delitti, W. B. C., Meguro, M., & Pausas, J. G. (2006). Biomass and mineralmass estimates in a “cerrado” ecosystem. Brazilian Journal of Botany, 29(4), 531–540. https://doi.org/10.1590/S0100-84042006000400003
17. Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K., Porembski, S., & Thiombiano, A. (2018). Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agroforestry Systems, 93(3), 1119–1132. https://doi.org/10.1007/s10457-018-0213-y
18. Dimobe, K., Mensah, S., Goetze, D., Ouédraogo, A., Kuyah, S., Porembski, S., & Thiombiano, A. (2018). Aboveground biomass partitioning and additive models for Combretum glutinosum and Terminalia laxiflora in West Africa. Biomass and Bioenergy, 115(November 2017), 151–159. https://doi.org/10.1016/j.biombioe.2018.04.022
19. Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 260(10), 1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034
20. Ejikeme, C. M., Ezeonu, C. S., & Eboatu, A. N. (2014). Determination of Physical and Phytochemical Constituents of Some Tropical Timbers Indigenous To Niger Delta Area of Nigeria. European Scientific Journal, 10(18), 1857–7881.
21. Fayolle, A., Doucet, J., Gillet, J., Bourland, N., & Lejeune, P. (2013). Forest Ecology and Management Tree allometry in Central Africa : Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37. https://doi.org/10.1016/j.foreco.2013.05.036
22. Fontès, J., & Guinko, S. (1995). Carte de la végétation et de l’occupation du sol du Burkina Faso. Notice explicative. Toulouse, Institut de la Carte Internationale de la Végétation ; (P. C. (88313101) Ministère de la Coopération Française (ed.); 1995th ed., Issue Ouagadougou, Institut du Développement Rural-Faculté des Sciences et Techniques).
23. Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I., & Thiombiano, A. (2020). Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03805
24. Gnoumou, A., Bognounou, F., Hahn, K., & Adjima Thiombiano. (2011). Woody plant diversity and stand structure in the Comoe-Leraba Reserve, Southwestern Burkina Faso (West Africa). Journal of Biological Sciences, 11(2), 111–123.
25. Gofc-Gold. (2008). Reducing greenhouse gas emissions from deforestation and degradation in developing countries: a sourcebook of methods and procedures for monitoring, measuring and reporting. In GOFC-GOLD Report version COP13-2. https://doi.org/10.1017/CBO9781107415324.004
26. Hahn-hadjali, K., & Thiombiano, A. (2000). PERCEPTION DES ESPECES EN VOIE DE DISPARITION EN MILIEU GOURMANTCHE ( EST DU BURKINA FASO ) Méthodologie Résultats et discussions. Berichte Des Sonderforshungsbereichs 268, Band 14, Frankfurt, 285–294.
27. Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-bredu, S., Valentini, R., Bernoux, M., & Saint-andré, L. (2010). Wood density , phytomass variations within and among trees , and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260(8), 1375–1388. https://doi.org/10.1016/j.foreco.2010.07.040
28. Hunter, M. O., Keller, M., Victoria, D., & Morton, D. C. (2013). Tree height and tropical forest biomass estimation. Biogeosciences, 10(12), 8385–8399. https://doi.org/10.5194/bg-10-8385-2013
29. Idu, M., Erhabor, J. O., & Ovuakporie-uvo, O. (2014). Ethnomedicinal Plants Used By the Idoma People- Benue State , Nigeria. American Journal of Ethnomedicine, 1(1), 72–88.
30. Ifo, S. A., Mbemba, M., Koubouana, F., & Binsangou, S. (2017). Stock de carbone dans les gros débris ligneux végétaux : cas des forêts tropicales pluvieuses de la Likouala, République du Congo. European Scientific Journal, ESJ, 13(12), 384. https://doi.org/10.19044/esj.2017.v13n12p384
31. IPCC. (2014). Mitigation of Climate Change Summary for Policymakers and Technical Summary Mitigation of Climate Change.
32. Ketterings, Q. M., Coe, R., Noordwijk, M. Van, Ambagau, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146, 199–209.
33. Kraus, T. E. C., Dahlgren, R. A., & Zasoski, R. J. (2003). Tannins in nutrient dynamics of forest ecosystems - A review. Plant and Soil, 256(1), 41–66. https://doi.org/10.1023/A:1026206511084
34. Kuyah, S., Muthuri, C., Jamnadass, R., Mwangi, P., Neufeldt, H., & Dietz, J. (2012). Crown area allometries for estimation of aboveground tree biomass in agricultural landscapes of western Kenya. 86, 267–277. https://doi.org/10.1007/s10457-012-9529-1
35. Makungwa, S. D., Chittock, A., Skole, D. L., Kanyama-Phiri, G. Y., & Woodhouse, I. H. (2013). Allometry for biomass estimation in Jatropha trees planted as boundary hedge in farmers’ fields. Forests, 4(2), 218–233. https://doi.org/10.3390/f4020218
36. Mankessi, F., Malonga, M. G. K., & Ifo, S. A. (2022). Dynamique du carbone organique du sol et de l’azote dans une chronoséquence de plantation de Acacia auriculiformis A. Cunn. ex Benth. (Fabaceae), à Bambou-Mingali (République du Congo). European Scientific Journal ESJ, 18(8), 172–188. https://doi.org/10.19044/esj.2022.v18n8p172
37. Mbayngone, E., & Thiombiano, A. (2011). Dégradation des aires protégées par l’exploitation des ressources végétales: cas de la réserve partielle de faune de Pama, Burkina Faso (Afrique de l’Ouest). Fruits, 66(3), 187–202. https://doi.org/10.1051/fruits/2011027
38. Mbow, C. (2009). Potentiel et dynamique des stocks de carbone des savanes soudaniennes et soudanoguinéennes du Sénégal. [Université Cheikh Anta Diop de Dakar (UCAD)]. https://doi.org/10.1177/001139283031001006
39. Mbow, C., Verstraete, M. M., Sambou, B., Diaw, A. T., & Neufeldt, H. (2014). Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan-Guinean ecosystems of Southern Senegal. Journal of Forest Research, 19(3), 340–347. https://doi.org/10.1007/s10310-013-0414-1
40. Morse, J. L., Megonigal, J. P., & Walbridge, M. R. (2004). Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry, 69(2), 175–206. https://doi.org/10.1023/B:BIOG.0000031077.28527.a2
41. Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G. S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Botsika Bobé, K. H., Mikala Okouyi, C., Nyangadouma, R., Lépengué, N., Mbatchi, B., & Picard, N. (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2013.10.029
42. Ouedraogo, A., Thiombiano, A., & Guinko, S. (2005). Utilisations, état des peuplements et régénération de cinq espèces ligneuses utilitaires dans l’Est du Burkina Faso. Homme, Plantes et Environnement Au Sahel Occidental, 173–184.
43. Ouédraogo, K., Dimobe, K., & Thiombiano, A. (2020). Allometric models for estimating aboveground biomass and carbon stock for diospyros mespiliformis in West Africa. Silva Fennica, 54(1). https://doi.org/10.14214/sf.10215
44. Ouedraogo, S., Ouedraogo, O., Dimobe, K., Thiombiano, A., & Boussim, I. J. (2020). Prediction of aboveground biomass and carbon stock of Balanites aegyptaca, a multipurpose species in Burkina Faso. Heliyon, 6(8), 1–12. https://doi.org/10.1016/j.heliyon.2020.e04581
45. Pallo, F. J. P., Sawadogo, N., Sawadogo, L., Sedogo, M. P., & Assa, A. (2008). Statut de la matière organique des sols dans la zone sud-soudanienne au Burkina Faso. Biotechnology, Agronomy and Society and Environment, 12(3), 29–38. http://www.pressesagro.be/base/index.php/base/article/view/365
46. Parresol, B. R. (1999). Assessing tree and stand biomass: A review with examples and critical comparisons. Forest Science, 45(4), 573–593. https://doi.org/10.1093/forestscience/45.4.573
47. Pearson, T. R. H., Brown, S., Murray, L., & Sidman, G. (2017). Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance and Management, 12(1). https://doi.org/10.1186/s13021-017-0072-2
48. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., & Wagner, F. (2003). Good Practice Guidance for Land Use , Land-Use Change and Forestry Edited by. Institute for Global Environmental Strategies, Hayama, Kanagawa.
49. Picard, N., Saint-andré, L., & Henry, M. (2012). Manuel de construction d ’ équations allométriques pour l ’ estimation du volume et la biomasse des arbres.
50. Sambaré, O., Ouedraogo, O., Wittig, R., & Thiombiano, A. (2010). Diversité et écologie des groupements ligneux des formations ripicoles du Burkina Faso (Afrique de l’Ouest). International Journal of Biological and Chemical Sciences, 4(5), 1782–1800. https://doi.org/10.4314/ijbcs.v4i5.65587
51. Santa Regina, I. (2000). Biomass estimation and nutrient pools in four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain. Forest Ecology and Management, 132(2–3), 127–141. https://doi.org/10.1016/S0378-1127(99)00219-4
52. Sinsin, B., Ahanchédé, A., Hounhouigan, J., Lalèyè, P., Chrysostome, C., Adégbidi, A., & Djego, J. (2016). Méthodes de collecte et d’analyse des données de terrain pour l’évaluation et le suivi de la végétation en Afrique (Vol. 20, Issue June).
53. Sprugel, D. G. (1983). Correcting for Bias in Log-Transformed Allometric Equations. Wiley, 64(1), 209–210.
54. Teodoro, M., Oliveira, D., Damasceno-junior, G. A., Pott, A., Conceição, A., Filho, P., Rondon, Y., & Parolin, P. (2014). Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. FOREST ECOLOGY AND MANAGEMENT, 331, 256–263. https://doi.org/10.1016/j.foreco.2014.08.011
55. Thiombiano, A., Schmidt, M., Dressler, S., Ouédraogo, A., Hahn, K., & Zizka, G. (2012). Catalogue des plantes vasculaires du Burkina Faso. Boissiera, Conservatoire et Jardin Botaniques de La Ville de Génève, 65, 1–391. http://goo.gl/1hizQw
56. Traore, L., Ouedraogo, I., Ouedraogo, A., & Thiombiano, A. (2011). Perceptions, usages et vulnérabilité des ressources végétales ligneuses dans le Sud-Ouest du Burkina Faso. International Journal of Biological and Chemical Sciences, 5(1), 258–278. https://doi.org/10.4314/ijbcs.v5i1.68103
57. Xie, L., Li, F., Zhang, L., Widagdo, F. R. A., & Dong, L. (2020). A bayesian approach to estimating seemingly unrelated regression for tree biomass model systems. Forests, 11(12), 1–30. https://doi.org/10.3390/f11121302
58. Zhang, J., Ge, Y., Chang, J., Jiang, B., Jiang, H., Peng, C., Zhu, J., Yuan, W., Qi, L., & Yu, S. (2007). Carbon storage by ecological service forests in Zhejiang Province, subtropical China. Forest Ecology and Management, 245(1–3), 64–75. https://doi.org/10.1016/j.foreco.2007.03.042
59. Zuur, A. F., Smith, E. N. M., & Springer, J. (2007). Analysing ecological data. In Springer Science and Business Media.
Published
2022-11-23
How to Cite
Kabore, G. E., Bayen, P., Dayamba, S. D., & Thiombiano, A. (2022). Distribution and Carbon Sequestration Potential of Cola Laurifolia Mast.: A Dominant Native Riparian Species Along Permanent Rivers in Sub-Saharan Africa. European Scientific Journal, ESJ, 11, 586. Retrieved from https://eujournal.org/index.php/esj/article/view/16141
Section
ESI Preprints