Agroecological Transition in the Cotton Zone: Analysis of Technical-Economic and Environmental Performances in Northern Benin - A Literature Review
Abstract
This article is a systematic review of the knowledge of technical-economic and environmental performance in agroecological transition. The data collected in the Scopus and dimension database concerned exclusively published articles and journals, using the relevant terms. Thus, 227 documents exported from Scopus and dimension were submitted to a bibliometric analysis with the Citespace software, then the inclusion and exclusion criteria were carried out according to the ROSES standards. The results reveal that the annual production of studies related to the technical-economic and environmental performance in agro-ecological transition is increasing with an annual growth rate of about 1.3%. There is a common understanding of agroecological transition. The agroecological transition addresses the problems of the food system from field to plate, covering all activities and actors involved in the cultivation based on natural resources. Among the agroecological practices analyzed, the application of compost seems the most promising to be scaled up to improve economic and environmental performance.
Downloads
Metrics
References
2. Anderson, C.R., Bruil, J., Chappell, M.J., Kiss, C., Pimbert, M.P., 2019. From transition to domains of transformation: Getting to sustainable and just food systems through agroecology. Sustainability 11, 5272.
3. Andrieu, N., Blundo-Canto, G., Chia, E., Diman, J.L., Dugué, P., Fanchone, A., Howland, F., Ott, S., Poulayer, C., 2022. Scenarios for an agroecological transition of smallholder family farmers: a case study in Guadeloupe. Agron. Sustain. Dev. 42, 95. https://doi.org/10.1007/s13593-022-00828-x
4. Audouin, E., Bergez, J.-E., Therond, O. (Eds.), 2019. Agroecological Transitions: From Theory to Practice in Local Participatory Design, 1st ed. 2019. ed. Springer International Publishing : Imprint: Springer, Cham. https://doi.org/10.1007/978-3-030-01953-2
5. Boillat, S., Bottazzi, P., 2020. Agroecology as a pathway to resilience justice: peasant movements and collective action in the Niayes coastal region of Senegal. International journal of sustainable development & world ecology 27, 662–677.
6. Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: harnessing ecosystem services for food security. Trends in ecology & evolution 28, 230–238.
7. Bonaudo, T., Bendahan, A.B., Sabatier, R., Ryschawy, J., Bellon, S., Leger, F., Magda, D., Tichit, M., 2014. Agroecological principles for the redesign of integrated crop–livestock systems. European Journal of Agronomy 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010
8. Castoldi, N., Bechini, L., 2010. Integrated sustainability assessment of cropping systems with agro-ecological and economic indicators in northern Italy. European Journal of Agronomy 32, 59–72. https://doi.org/10.1016/j.eja.2009.02.003
9. Catarino, R., Therond, O., Berthomier, J., Miara, M., Mérot, E., Misslin, R., Vanhove, P., Villerd, J., Angevin, F., 2021. Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform. Agricultural Systems 189, 103066. https://doi.org/10.1016/j.agsy.2021.103066
10. Caviggioli, F., Ughetto, E., 2019. A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society. International journal of production economics 208, 254–268.
11. Chavas, J.-P., Kim, K., 2007. Measurement and sources of economies of scope: a primal approach. Journal of Institutional and Theoretical Economics (JITE)/Zeitschrift für die gesamte Staatswissenschaft 411–427.
12. Chen, C., 2017. Science Mapping: A Systematic Review of the Literature. Journal of Data and Information Science 2, 1–40. https://doi.org/10.1515/jdis-2017-0006
13. Coolsaet, B., 2016. Towards an agroecology of knowledges: Recognition, cognitive justice and farmers’ autonomy in France. Journal of Rural Studies 47, 165–171.
14. Côte, F.X., Rapidel, B., Sourisseau, J.M., Affholder, F., Andrieu, N., Bessou, C., Caron, P., Deguine, J.-P., Faure, G., Hainzelin, E., Malezieux, E., Poirier-Magona, E., Roudier, P., Scopel, E., Tixier, P., Toillier, A., Perret, S., 2022. Levers for the agroecological transition of tropical agriculture. Agron. Sustain. Dev. 42, 67. https://doi.org/10.1007/s13593-022-00799-z
15. De Leijster, V., Verburg, R.W., Santos, M.J., Wassen, M.J., Martínez-Mena, M., de Vente, J., Verweij, P.A., 2020. Almond farm profitability under agroecological management in south-eastern Spain: Accounting for externalities and opportunity costs. Agricultural Systems 183, 102878. https://doi.org/10.1016/j.agsy.2020.102878
16. De Roest, K., Ferrari, P., Knickel, K., 2018. Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways. Journal of Rural Studies 59, 222–231.
17. Francis, C., Lieblein, G., Gliessman, S., Breland, T.A., Creamer, N., Harwood, R., Salomonsson, L., Helenius, J., Rickerl, D., Salvador, R., 2003. Agroecology: The ecology of food systems. Journal of sustainable agriculture 22, 99–118.
18. Garcia-Yi, J., Lapikanonth, T., Vionita, H., Vu, H., Yang, S., Zhong, Y., Li, Y., Nagelschneider, V., Schlindwein, B., Wesseler, J., 2014. What are the socio-economic impacts of genetically modified crops worldwide? A systematic map protocol. Environmental Evidence 3, 24. https://doi.org/10.1186/2047-2382-3-24
19. Gliessman, S.R., Engles, E., Krieger, R., 1998. Agroecology: ecological processes in sustainable agriculture. CRC press.
20. HLPE, 2019. Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition. High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security: Rome, Italy.
21. Kremen, C., Iles, A., Bacon, C., 2012. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecology and society 17.
22. Magrini, M.-B., Martin, G., Magne, M.-A., Duru, M., Couix, N., Hazard, L., Plumecocq, G., 2019. Agroecological transition from farms to territorialised agri-food systems: issues and drivers, in: Agroecological Transitions: From Theory to Practice in Local Participatory Design. Springer, Cham, pp. 69–98.
23. Meek, D., 2016. The cultural politics of the agroecological transition. Agriculture and Human Values 33, 275–290.
24. Persiani, A., Montemurro, F., Diacono, M., 2021. Agronomic and Environmental Performances of On-Farm Compost Production and Application in an Organic Vegetable Rotation. Agronomy 11, 2073. https://doi.org/10.3390/agronomy11102073
25. Petrokofsky, G., Sist, P., Blanc, L., Doucet, J.-L., Finegan, B., Gourlet-Fleury, S., Healey, J.R., Livoreil, B., Nasi, R., Peña-Claros, M., Putz, F.E., Zhou, W., 2015. Comparative effectiveness of silvicultural interventions for increasing timber production and sustaining conservation values in natural tropical production forests. A systematic review protocol. Environ. Evid. 4. https://doi.org/10.1186/s13750-015-0034-7
26. Trabelsi, M., Mandart, E., Le Grusse, P., Bord, J.-P., 2016. How to measure the agroecological performance of farming in order to assist with the transition process. Environ Sci Pollut Res 23, 139–156. https://doi.org/10.1007/s11356-015-5680-3
27. Van der Ploeg, J.D., Barjolle, D., Bruil, J., Brunori, G., Madureira, L.M.C., Dessein, J., Drąg, Z., Fink-Kessler, A., Gasselin, P., de Molina, M.G., 2019. The economic potential of agroecology: Empirical evidence from Europe. Journal of Rural Studies 71, 46–61.
28. Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A., Peigné, J., 2014. Agroecological practices for sustainable agriculture. A review. Agronomy for sustainable development 34, 1–20.
29. Xiao, F., Li, C., Sun, J., Zhang, L., 2017. Knowledge Domain and Emerging Trends in Organic Photovoltaic Technology: A Scientometric Review Based on CiteSpace Analysis. Front. Chem. 5, 67. https://doi.org/10.3389/fchem.2017.00067
30. Zimmermann, B., Claß-Mahler, I., von Cossel, M., Lewandowski, I., Weik, J., Spiller, A., Nitzko, S., Lippert, C., Krimly, T., Pergner, I., Zörb, C., Wimmer, M.A., Dier, M., Schurr, F.M., Pagel, J., Riemenschneider, A., Kehlenbeck, H., Feike, T., Klocke, B., Lieb, R., Kühne, S., Krengel-Horney, S., Gitzel, J., El-Hasan, A., Thomas, S., Rieker, M., Schmid, K., Streck, T., Ingwersen, J., Ludewig, U., Neumann, G., Maywald, N., Müller, T., Bradáčová, K., Göbel, M., Kandeler, E., Marhan, S., Schuster, R., Griepentrog, H.-W., Reiser, D., Stana, A., Graeff-Hönninger, S., Munz, S., Otto, D., Gerhards, R., Saile, M., Hermann, W., Schwarz, J., Frank, M., Kruse, M., Piepho, H.-P., Rosenkranz, P., Wallner, K., Zikeli, S., Petschenka, G., Schönleber, N., Vögele, R.T., Bahrs, E., 2021. Mineral-Ecological Cropping Systems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy 11, 1710. https://doi.org/10.3390/agronomy11091710
Copyright (c) 2022 Abdou Ganiou Abou Chabi , Silvère Tovignan, Jacob Afouda Yabi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.