Structural Evolution and Its Implication for the Emplacement of Gold Deposit in the Central Part of Burkina Faso, West Africa

  • Gomdebziige Ernest Ouedrago Université Joseph Ki ZERBO/Laboratoire Geosciences et Environnement, Ouagadougou, Burkina Faso Université de Fada N’Gourma/Département Génie Minier, Burkina Faso
  • Nicolas Kagambega Université Joseph Ki ZERBO/Laboratoire Geosciences et Environnement, Ouagadougou, Burkina Faso Université de Fada N’Gourma/Département Génie Minier, Burkina Faso
  • Sega Sawadogo Université Joseph Ki ZERBO/Laboratoire Geosciences et Environnement, Ouagadougou, Burkina Faso
  • Hubert G. Zongo Université de Fada N’Gourma/Département Génie Minier, Burkina Faso Université Joseph Ki ZERBO/Laboratoire Geosciences et Environnement, Ouagadougou, Burkina Faso
  • Madi Ouadraogo Université de Fada N’Gourma/Département Génie Minier, Burkina Faso Université Joseph Ki ZERBO/Laboratoire Geosciences et Environnement, Ouagadougou, Burkina Faso
  • Martin Lompo Université Joseph Ki ZERBO/Laboratoire Geosciences et Environnement (LaGE), Ouagadougou, Burkina Faso
Keywords: Structural, Riedel system, Nakomgo, Toega


In order to constrain the structural evolution in the central part of Burkina Faso and its implication for the emplacement of gold deposits, we undertook a structural mapping by coupling Landsat and aeromagnetic images interpretation to outcrop and core mapping followed by laboratory work. This approach reveals that the structural architecture in this locality mainly results from dextral transcurrent progressive deformation due to a NW-SE trending major stress. This architecture is similar to the Riedel-Tchalenko model. Initially, the dominant normal stress created an E-W constriction resulting in the development of N-S shear corridors. Subsequently, the tangential stress that took over this generated the progressive development of simple dextral shear zones with a NE-SW orientation that are locally taken up by ENE-WSW dextral shear bands associated with the Riedel's R structures. As a result of the cooling of the crust, we are witnessing the formation of sinistral NW-SE and dextral NNE-SSW strike-slip faults respectively corresponding to Riedel's R' structures and Tchalenko's P structures. The development of NW-SE pre-Eburnean shear zones and particularly the N-S shear corridors, are synchronous with the circulation of gold-bearing fluids through the zone. However, the intersections of these directional corridors create zones suitable for gold concentration. Within these zones, ductile-brittle deformation following the emplacement of the shear bands has facilitated the remobilization and concentration of gold-bearing fluids within rocks with the appropriate rheological conditions. This is the case for Toega gold deposit.


Download data is not yet available.


Metrics Loading ...


1. Andrew, H. Allibone, 2002. Structural Controls on Gold Mineralization at the Ashanti Gold Deposit, Obuasi, Ghana. Society of Economic Geologists, Special Publication 9, 2002, p. 65–93
2. Andrew J. Tunks, David Selley, Jamie R. Roger, Gary Brabham, 2004.Vein mineralization at the Damang Gold Mine, Ghana: controls on mineralization. Journal of Structural Geology 26 (2004) 1257-1273. doi:10.1016/j.jsg.2003.11.005
3. Archambault, G., & Daigneault, R. (1988). Anisotropic deformation and anastomosing process of development of shear zones and shear belts on all scale. Geological Association of Canada. Mineralogy Association of Canada; Abstracts 13, page A3.
4. Augustin, J., Gaboury, D., & Crevier, M. (2017). Structural and gold mineralization evolution of the wold-class orogenic Mana District, Burkina Faso: multiple mineralizing events over 150 million years., Ore Geology Reviews, 2017.
5. Baratoux, L., Metelka, V., Naba, S., Jessell, M., Grégoire, M., & Ganne, J. (2011). Coeval shortening of juvenile Paleoproterozoic oceanic arc crust and granitoid emplacement during
the Eburnean orogeny (~2.2–2.0 Ga): the Boromo, Houndé, and Banfora greenstone
belts, western Burkina Faso. Precambrian Res. 191, 18–45.
6. Baratoux, L., Metelka, V., Naba, S., Ouiya, P., Siebenaller, L., Jessell,M.W., Nare, A., Béziat, D., Salvi, S., & Franceschi, G. (2015). Tectonic Evolution of the Gaoua Region: Implications for the Mineralization. Journal of African Earth Sciences xxx (2015) xxx-xxx.
7. Béziat, D., Dubois, D., Debat, P., Nikiéma, S., Salvi, S., & Tollon, F. (2008). Gold metallogeny in the Birimian craton of Burkina Faso (West Africa). Journal of African Earth Sciences 50 (2008) 215-233. doi:10.1016/j.jafrearsci.2007.09.017.
8. Block, S., Jessell, M., Aillères, L., Baratoux, L., Bruguier, O., Zeh, A., Bosch, D., Caby, C., & Mensah, C. (2016). Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny,NW Ghana, West African Craton: Interplay of coeval contractionaldeformation and extensional gravitational collapse. Precambrian Research 274 (2016) 82–109.
9. Boher, M., Abouchami, W., Michard, A., Albarède, F., & Arndt, T.N. (1992). Crustal Growth in West Africa at 2.1 Ga. Journal of Geophysical Research, vol, 97, NO. B1, Pages 345-367, January 10, 1992
10. Castaing, C., Bila, M., Milési, J-P., Thiéblemont, D., Le Metour, J., Egal, E., Donzeau, M., Guerrot, C., Cocherie, A., Chevremont, P., Teygey, I., Itard, Y., Zida, B., Ouédraogo, I., Koté, S., Kaboré, B.E., Ouédraogo, C., Ki J-C., & Zunino, C. (2003). Notice explicative de la carte géologique et minière du Burkina Faso à 1/1000 000. 3ème édition: 1-148
11. Chardon, D., Bamba O., & Traoré, K. (2020). Eburnean deformation pattern of Burkina Faso and the tectonic significance of shear zones in the West African craton. BSGF-Earth Sciences Bulletin 2020, 191, 2.
12. David, I. G., Santosh, M., Richard, J. G., & Liang, Z. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontières 9 (2018) 1163-1177.
13. Dubé, B., & Gosselin, P. (2007). Greenstone-hosted quartz-carbonate vein deposits, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 49-73.
14. Ducellier, J. (1963). Contribution à l’étude des formations cristallines et métamorphiques du Centre et du Nord de la Haute Volta. Mém. B.R.G.M., Paris, 312, pp.769-776.
15. Ferré, E. C., & Caby, R. (2007). Granulites facies metamorphism and charnokite plutonism: examples from the Neoproterozoïc belt Northen Nigeria. Proceedings of Geologists Association 18, 1-8.
16. Feybesse, J., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J., Milesi, P., & Bouchot, V. (2006). The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling. Precambrian Research 149 (2006) 149-196. doi:10.1016/j.precamres.2006.06.003
17. Fontaine, A., Eglinger, A., Ada, K., André-Mayer, S., Reisberg, L., Siebenaller, L., Le Mignot, E., Ganne, J., & Poujol, M. (2017). Geology of the world-class Kiaka polyphase gold deposit,West African Craton, Burkina Faso Journal of African Earth Sciences 126 (2017) 96-122
18. Haakon, F. (2016). Structural geology. Second edition, Cambridge Unisersity Press
19. Hein, K. A. A., Morel, V., Kagone, O., Kiemde, F., & Mayes, K. (2004). Birimian lithological succession and structural evolution in the Goren Segment of the Boromo-Goren Greenstone Belt, Burkina Faso. Journal of African Earth Sciences 39, 1–23.
20. Hein, K. A .A. (2010). Succession of structural events in the Goren greenstone belt (Burkina Faso): Implications for West African tectonics. Journal of African Earth Sciences 56 (2010) 83-94. doi:10.1016/j.jafrearsci.2009.06.002
21. Hottin, G. & Ouédraogo, O. F. (1976). Carte géologique du Burkina Faso au 1/1000000ème, 2ème ed., 1992, Bureau des mines et de la géologie du Burkina Faso.
22. Hudleston, P.J., Schultz-Ela, D., & Southwick, D.L. (1988). Transpression in an Archean belt, northern Minnesota. Canadian Journal of Earth Sciences; volume 25, pages 1060- 1068.
23. Kagambèga, N., Lompo, M., Diallo, D. P., & Naba, S. (2004). Les granitoïdes paléoprotérozoïques du Burkina Faso (Afrique de l’Ouest) - Caractères pétrologiques. J. Sci. Vol. 4, n°3, Dakar, Sénégal, pp : 81−96.
24. Khodayar, M., Bjornsson, S., Kristinsson, S.G., Karlsdottir, R., Olafsson, M. & Vikingsson, S. (2018). Tectonic Control of the Theistareykir Geothermal Field by Rift and Transform Zones in North Iceland: A Multidisciplinary Approach. Open Journal of Geology, 8, 543-584.
25. Lompo, M., Caby, R., & Robineau, B. (1991). Evolution structurale du Birimien au Burkina Faso-exemple de la ceinture de Boromo-Goren dans le secteur de Kwademen (Afrique de l’Ouest). Comptes Rendus de l’Académie des Sciences, Paris 313, 945-950.
26. Lompo, M. (2001). Le paléoprotérozoïque Birimien du Burkina Faso -Afrique de l’Ouest- Evolution crustale et concentrations aurifères. Mémoire d’Habilitation à Diriger des Recherches
27. Lompo, M. (2009). Geodynamic evolution of the 2.25-2.0 Ga Paleoproterozoic magmatic rocks in the Man-Leo Shield of the West African Craton. A model of subsidence of an oceanic plateau (Eds), Paleoproterozoic Supercontinents and Global Evolution, vol. 323. Geological society of London, Spécial Publiscations, pp. 231-254.
28. Lompo, M. (2010). Paleoproterozoic structural evolution of the Man-Leo Schield (West Africa). Journal of African Earth Sciences 58 (2010) 19-39
29. Markwitz, V., Hein, K.A.A., Jessell, M., & Miller, J. (2015). Metallogenic portfolio of the West Africa craton. Ore Geology Reviews (2015).
30. Markwitz, V., Hein, K.A.A., & Miller, J. (2016). Compilation of West African mineral deposits: Spatial distribution and mineral endowment. Precambrian Research 274 (2016) 61-81
31. McCuaig, T.C., Fougerouse, D., Salvi, S., Siebenaller, L., Parra-Avila, L. A., Seed, R., Béziat, D., & André-Mayer, A.S. (2016). The Inata deposit, Belahouro District, northern Burkina Faso. Ore Geology Reviews 78 (2016) 639–644.
32. Mélisi, J.P., Ledru, P., Feybesse, J.L., Dammanget, A., & Marcoux, E. (1992). Early Proterozoic ore deposit and tectonics of the Birimian orogenic belt, West Africa. Precambrian Research 58, 305-344
33. Metelka, V., Baratoux, L., Naba, S., & Jessell, W.M. (2011). A geophysically constrained litho-structural analysis of the Eburnean greenstone belts and associated granitoid domains, western Burkina Faso. Precambrian Research. doi:10.1016/j.precamres.2011.08.002.
34. Murray, S., Torvela, T., & Bills, H. (2019). A geostatistical approach to analyzing gold distribution controlled by large-scale fault systems – An example from Cote d’Ivoire, Journal of African Earth Sciences 151 (2019) 351-370.
35. Naba, S., Lompo, M., Débat, P., Bouchez, J.L., & Béziat, D. (2004). Structure and emplacement model for late-orogenic Paleoproterozoic granitoids: the Tenkodogo-Yamba elongate pluton (Eastern Burkina Faso). Journal of African Earth Sciences 38: 41–57.
36. Ouiya, P., Siebenaller, L., Salvi, S., Béziat, D., Naba, S., Baratoux, L., Naré, A. & Franceschi, G. (2015). The Nassara gold prospect, Gaoua District, southwestern Burkina Faso. Ore Geology Reviews (2015).
37. Passchier, C.W., & Rudolph, A.J.T., (2005). Microtectonic, 2nd, Revised and Enlarged edition. Springer. ISBN-10 3-540-64003-7 Springer Berlin Heidelberg New York
38. Pons, J., Barbey, P., Dupuis, D., Léger, J.M. (1995). Mechanisms of pluton emplacement and structural evolution of a 2.1 Ga juvenile continental crust: the Birimian of southwestern Niger. Precambrian Research 70 (1995) 281-301.
39. Ramsay, J.G. (1967). Folding and fracturing of rocks. McGrmr-Hi//, inc., New York
40. Robert, F. (1990). Internal structure of the Cadillac Tectonic Zone southeast of Val d'Or, Abitibi Belt, Quebec. Canadian Journal of Earth Sciences 26 (12), 2661-2675, 1989.
41. Sawadogo, S., Naba, S., Ilboudo, H., Traoré, A.S., Nakolendoussé, S., & Lompo, M. (2018). The Belahourou granite pluton (Djibo greenstone belt, Burkina Faso): Emplacement mechanism and implication for gold mineralization along a shear zone. Journal of African Earth Sciences 148 (2018) 59-68.
42. Sawadogo, S., Yameogo, A.O., & Naba, S. (2021). Caractérisation des structures de déformation
43. Éburnéennes dans la ceinture de roches vertes et les granitoïdes de la région de Zorgho (centre du burkina Faso). Annales de l’Université Joseph KI-ZERBO – Série C, vol. 019, Décembre 2021 – ISSN : 2424 7545
44. Siagné, Z.H., Aïfa, T., Kouamelan, A.N., Houssou, N.N., Digbeu, W., Kakou, B.K.F., & Couderc, P. (2022). New lithostructural map of the Doropo region, northeast Ivory coast : Insight from structural and aeromagnetic data. Journal of African Earth Sciences 196 (2022) 104680.
45. Soumaila, A., Henry, P., & Rossy, M. (2004). Contexte de mise en place des roches basiques de la ceinture de roches vertes birimiennes de Diagourou-Darbani (Liptako, Niger, Afrique de l’Ouest) : Plateau océanique ou environnement d’arc/bassin arrière-arc océanique. Comptes Rendus Géosciences 336, 1137-1147
46. Sylvestre, A.G., & Smith, R.R. (1976). Tectonic transpression and basement controlled deformation in San Andreas fault zone, Salton trough, California. American Association of Petroleum Geologists Bulletin; volume 60, page 2081-2102.
47. Tchalenko, J.S., & Ambrasey, N.N. (1970). Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures. Geological Society of America Bulletin; volume 81, pages 41-66.
48. Tshibubudze, A., Hein, K.A.A., & Marquis, P. (2009). The Markoye Shear Zone in northeast Burkina Faso. Journal of African Earth Sciences 55, 245-256.
49. Tshibubudze, A., & Hein, K.A.A. (2010). Tectonic evolution of the Oudalan-Gorouol greenstone belt in northeast Burkina Faso and Niger, West African craton. Geophysical research Abstracts 12, ECU2010-708 (2010 ECU General Assembly 2010, ISSN of eISSN: 1607-7962).
50. Woodman, K. K., Baratoux, L., Somda, A., & Siebenaller, L. (2015). The Youga gold deposit, Burkina Faso. Ore Geology Reviews (2015)
How to Cite
Ouedrago, G. E., Kagambega, N., Sawadogo, S., Zongo, H. G., Ouadraogo, M., & Lompo, M. (2023). Structural Evolution and Its Implication for the Emplacement of Gold Deposit in the Central Part of Burkina Faso, West Africa. European Scientific Journal, ESJ, 15, 458. Retrieved from
ESI Preprints

Most read articles by the same author(s)