Viewpoint: The Physics in the New Era of Computing

  • Hiqmet Kamberaj International Balkan University, Computer Engineering, North Macedonia
Keywords: Information Age, Computers, Quantum Computing, Quantum Computer Intelligence

Abstract

The 21st century is the Information Age, characterised by an economy based on information computerisation. In this new era of computing, the role of physics is becoming crucial and practical. Thus, physics is not seen anymore as an abstract and purely academic endeavour. This study addresses physics inventions' contributions to computer science, society, and the economy. In particular, the physics discoveries in superconductivity, quantum mechanics, elementary particle physics, vacuum tubes, transistors and integrated circuits, electronic digital computer, fibre optics, lasers, and quantum computers will be discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Abrikosov, A. (2003). Type II superconductors and the vortex lattice. Nobel Lecture.
2. Alferov, Z. I. (2000, December 8). Quasi-electric fields and band offsets: teaching electrons new tricks. Nobel Lecture.
3. Andersen, T. (2019). Quantization of fields by averaging classical evolution equations. Physical Review D, 99, 016012.
4. Atanasoff, J. V. (1973). Computing Machine for the Solution of large Systems of Linear Algebraic Equations. New York: Springer-Verlag.
5. Atanasoff, J. V. (1984). Advent of electronic digital computing. IEEE annals of the history of computing, 6(3), 229.
6. Bardeen, J. (1956, December 11). Semiconductor research leading to the point contact transistor. Nobel Lecture.
7. Bardeen, J., Cooper, L., & Schrieffer, J. (1957). Microscopic Theory of Superconductivity. Physical Review, 106, 162.
8. Bardeen, J., Cooper, L., & Schrieffer, J. (1957). Theory of Superconductivity. Physical Review, 108, 1175.
9. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., . . . Martinis, J. (2014). Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508, 500.
10. Basov, N. G. (1964, December 11). Semiconductor lasers. Nobel Lecture.
11. Bednorz, J., & Müller, K. (1986). High Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B - Condensed Matter, 64, 189.
12. Bhadra, N. K. (2017). The complex quantum-state of consciousness. IOSR Journal of Applied Physics, 9, 57.
13. Board, N. S. (2012). Science and Engineering Indicators.
14. Bohr, N. (1922, December 11). The structure of the atom. Nobel Lecture.
15. Brattain, W. (1956, December 11). Surface properties of semiconductors. Nobel Lecture.
16. Broglie, L. d. (1929, December 12). The wave nature of the electron. Nobel Lecture.
17. Buck, A. (2014). The cryotron - a superconductive computer component. MIT. Lincoln Laboratory.
18. Carvallo, M. (Ed.). (1997). Introduction to quantum brain dynamics. In: Nature, Cognition and System. Kluwer Academic.
19. Crick, F. (1962, December 11). On the genetic code. Nobel Lecture.
20. Davies, P. (2008). A Quantum Origin of Life: Quantum Aspects of Life. (D. Abbott, P. Davies, & A. Pati, Eds.) World Scientific.
21. Delbrück, M. (1969, December 10). A physicist’s renewed look at biology - Twenty years later. Nobel Lecture.
22. Deutsch, D., & Ekert, A. (1998). Quantum Computation. Physics World.
23. Dirac, P. (1933, December 12). Theory of electrons and positrons. Nobel Lecture.
24. Dumitrescu, P., Bohnet, J., Gaebler, J., Hankin, A., Hayes, D., Kumar, A., . . . Potter, A. (2022). Dynamical topological phase realized in a trapped-ion quantum simulator. Nature, 607, 463-467.
25. Eckert, J. P., & Mauchly, J. W. (1973, October). Patent No. U.S. Patent.
26. Edison, T. (1884). Patent No. U.S. Patent 307,031.
27. Einstein, A. (1923, July 11). Fundamental ideas and problems of the theory of relativity. Nobel Lecture.
28. Faggin, F. (1992). The birth of microprocessor. Byte, 17(3), 145.
29. Feynman, R. (1965, December 11). The development of the space-time view of quantum electrodynamics. Nobel Lecture.
30. Fleming, A. (1904). Patent No. U.S. Patent 803,684.
31. Flowers, T. H. (1983). The design of Colossus. Annals of the history of computing, 5, 239.
32. Ginzburg, V., & Landau, L. (1950). On the theory of superconductivity. Journal of Experimental and Theoretical Physics, 20, 1064.
33. Gould, G. R. (1960). The LASER, light amplification by stimulated emission of radiation. In P. A. Franken, & R. H. Sands (Ed.), In the Ann Arbor conference on optical pumping, 187 (4736), p. 493 .
34. H. C. Townes, H. (1999). How the laser happened. Adventures of a Scientist. Oxford University Press.
35. Hameroff, S. R., & Penrose, R. (1996). Conscious events as orchestrated space-time selections. Journal Consciousness Studies, 3(1), 36.
36. Han, J.-W., & M. Meyyappan, M. (2014). Introducing vacuum transistors: A device made of nothing. IEEE Spectrum.
37. Heizenberg, W. (1933, December 11). The development of quantum mechanics. Nobel Lecture.
38. Hennessy, J., & Patterson, D. (2006). Computer architecture: A quantitative approach (4 ed.). Morgan Kaufmann.
39. Hershey, A. (1969, December 12). Idiosyncrasies of DNA structure. Nobel Lecture.
40. Intel. (2014). 22 nm Technology.
41. Jacobi, W. (1952, May). Patent No. DE 833366.
42. Jibu, M., Yasue, K., & Hagan, S. (1997). Evanescent photon and cellular vision. Biosystems, 42(1), 65 .
43. Kerskens, M. C., & Pérez, D. (2022). Experimental indications of non-classical brain functions. J. Phys. Commun., 6, 105001.
44. Kilby, J. (2000, December 8). Turning potential into realities: The invention of the integrated circuit. Nobel lecture.
45. Koch, C., & Hepp, K. (2006). Quantum mechanics in the brain. Nature, 440(7084), 611.
46. Kroemer, H. (2000, December 8). The double heterostructure: concept and its applications in physics, electronics and technology. Nobel lecture.
47. Luria, S. (1969, December 10). Phage, colicins and macroregulatory phenomena. Nobel Lecture.
48. Maiman, T. H. (1959). Stimulated optical radiation in ruby. Nature, University of Michigan.
49. Mann, A. (2011). High-temperature superconductivity at 25: Still in suspense. Nature, 475, 280.
50. Meijer, D. K. (2012). Quantum modeling of the mental state: the concept of a cyclic mental workspace. Syntropy Journal, 1, 1.
51. Mi, X., et. al. (2022). Time-crystalline eigenstate order on a quantum processor. Nature, 601, 531-536.
52. Nielsen, M. A. (2002). http://www.qinfo.org/people/nielsen/qicss.html. Retrieved 2002, from Eight Introductory Lecturers on Quantum Information Science.
53. Noyce, R. (1977). Microelectronics. Scientific American, 237(3), 62.
54. O’Sullivan, J., Lunt, O., Zollitsch, C., Thewalt, M., Morton, J., & Pal, A. (2020). Signatures of discrete time crystalline order in dissipative spin ensembles. New J. Phys., 22, 085001.
55. Omari, K., & Hayward, T. (2014). Chirality-based vortex domain-wall logic gates. Phys. Rev. App., 2(4), 044001.
56. Onnes, H. K. (1911). Further experiments with Liquid Helium. C. On the change of electric resistance of pure metals at very low temperatures. IV. The resistance of pure mercury at helium temperatures. Comm. Phys. Lab. Univ. Leiden, 120b.
57. Penrose, R. (1989). The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics. Oxford: Oxford University Press.
58. Penrose, R. (1994). Shadows of the Mind. An Approach to the Missing Science of Consciousness. Oxford: Oxford University Press.
59. Penrose, R. (1996). On gravity’s role in quantum state reduction. General Relativity and Gravitation, 28, 581.
60. Planck, M. (1943). Zur Geschichte der Auffindung des physikalischen Wirkungsquantums. Naturwissenschaften, 31(14-15), 153.
61. Prokhorov, A. M. (1964, December 11). Quantum electronics. Nobel Lecture.
62. Randall, A. (2006). A lost interview with ENIAC co-inventor J. Presper Eckert. Computer World.
63. Schrödinger, E. (1933, December 12). The fundamental idea of wave mechanics. Nobel Lecture.
64. Schrödinger, E. (1944). What is Life? Cambridge University Press.
65. Schulten, K., Phillips, J., Kale, L., & Bhatele, A. (2008). Biomolecular Modeling in the Era of Petascale Computing.
66. Schwinger, J. (1965, December 11). Relativistic quantum field theory. Nobel Lecture.
67. Shockley, W. (1956, December 11). Transistor technology evokes new physics. Nobel Lecture.
68. Thomson, J. (1906, December 11). Carriers of negative electricity. Nobel Lecture.
69. Tomonaga, S.-I. (1966, May 6). Development of quantum electrodynamics. Nobel Lecture.
70. Townes, H. C. (1964, December 11). Production of Coherent Radiation by Atoms and Molecules. Nobel Lecture.
71. Turban, E., Rainer, R. K., & Potter, R. (2005). Introduction to Information Technology. John Wiley & Sons.
72. V., W. M., Wheeler, D. J., & Gill, S. (1951). The preparation programs for an electronic digital computer. Cambridge: Addison-Wesley.
73. Vardalas, J. (2003, May). Twist and turns in the development of the transistor. Retrieved from IEEE-USA Today’s Engineer.
74. Verlinde, E. P. (2011). On the Origin of Gravity and the Laws of Newton. JHEP, 04, 29 .
75. Watson, J. (1962, December 11). The involvement of RNA in the synthesis of proteins. Nobel Lecture.
76. Wilkes, M. V. (1985). Memoirs of a computer pioneer. Cambridge: MIT Press.
77. Wilkins, M. (1962, December 11). The molecular configuration of nucleic acids. Nobel Lecture.
Published
2023-05-31
How to Cite
Kamberaj, H. (2023). Viewpoint: The Physics in the New Era of Computing. European Scientific Journal, ESJ, 19(15), 1. https://doi.org/10.19044/esj.2023.v19n15p1
Section
ESJ Natural/Life/Medical Sciences