Comparative Study of Two Monoterpenes Effect on Rhipicephalus microplus Tick

  • Anass Coulibaly Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), Département Substances Naturelles, Ouagadougou, Burkina Faso Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Unité des maladies Vectorielles et Biodiversité (UMaVeB), Bobo-Dioulasso, Burkina Faso Laboratoire de Biochimie et de Chimie Appliquées (LA.BIO.CA), UFR/SVT, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
  • Delphine M. Hema Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), Département Substances Naturelles, Ouagadougou, Burkina Faso Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Unité des maladies Vectorielles et Biodiversité (UMaVeB), Bobo-Dioulasso, Burkina Faso Laboratoire de Biochimie et de Chimie Appliquées (LA.BIO.CA), UFR/SVT, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
  • Martin Kiendrebeogo Laboratoire de Biochimie et de Chimie Appliquées (LA.BIO.CA), UFR/SVT, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
  • Roger C.H. Nebie Sciences Appliquées et Technologies (IRSAT), Département Substances Naturelles, Ouagadougou, Burkina Faso
Keywords: Acaricidal activity, Thymol, 1.8 cineole, Ticks, Rhipicephalus microplus

Abstract

The cattle tick Rhipicephalus microplus is one of the most important ectoparasites for livestock in tropical and subtropical areas worldwide. This tick hurts the economy of the milk and meat production chain. In addition, it constitutes a vector for the transmission of Anaplasmosis and Babesiosis pathogens. The control of R. microplus populations is mainly based on the use of synthetic acaricides. However, using this control method presents a danger to humans and the environment and leads to the emergence of resistant tick populations. In this situation, searching for ecological and effective control alternatives is essential. Thus, plant extracts constitute a promising solution, particularly essential oils and their active compounds. Thus, the present study aims to assess the acaricidal activity of two monoterpenes (Thymol and 1.8 cineole) abundantly found in essential oils to find an alternative to synthetic acaricides. The acaricidal activity was determined according to the method of larval immersion test (LIT). Eight concentrations were tested and R software version 4.0.3 was used for data analysis. Results showed 100 % larval mortality rates for the two monoterpenes with LC50 and LC90 values of (0.28 and 0.64) and (0.64 and 2.66) respectively, for thymol and 1.8 cineole for the immersion time of 5 min. For 10 min of immersion, all LC values decreased for the two monoterpenes. These findings highlight the potential of the thymol and 1.8 cineole as an alternative for managing R. microplus tick.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. J Econ Entomol, 18, 265–267. https:// doi.org/10.1093/jee/18.2.265a.
2. Adenubi, O.T., Abolaji, AO., Salihu, T., Akande, F.A., Lawal,H. (2021). Chemical composition and acaricidal activity of Eucalyptus globulus essential oil against the vector of tropical bovine piroplasmosis, Rhipicephalus (Boophilus) annulatus. Exp Appl Acarol, 83(2), 301-312. https://doi : 10.1007/s10493-020-00578-z.
3. Adenubi, O.T., Fasina, F.O., McGaw, L.J., Eloff, J.N., & Naidoo, V. (2016). Plant extracts to control ticks of veterinary and medical importance: A review. South African Journal of Botany ,105, 178–193. https://doi.org/10.1016/j.sajb.2016.03.010.
4. Cai, Z.M., Peng, J.Q., Chen, Y., Tao, L., Zhang, Y., Fu, L., Long, Q., & Shen, X. (2021). 1,8-cineole: a review of source, biological activities, and application. J Asian Nat Prod Res, 23(10), 938-954. http//doi: 10.1080/10286020.2020.1839432.
5. Cardoso, A.D.S., Santos, E.G.G., Lima, A.D.S., Temeyer K.B., Adalberto, Perez de Leon A.A., Costa L.M.J., & Soares, A.M.D.S.2020. Terpenes on Rhipicephalus (Boophilus) microplus : Acaricidal activity and acetylcholinesterase inhibition. Veterinary Parasitology 280, 109090. https://doi : 10.1016/j.vetpar.2020.109090.
6. Chagas, A.C.S., Barros, L.D., Cotinguiba, F., Furlan, M., Giglioti, R., Oliveira, M.C. S., & Bizzo, H. R. (2012). In vitro efficacy of plant extracts and synthesized substances on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res, 110 (1), 295–303. https://doi :10.1007/s00436-011-2488-z.
7. Cruz, E.M.O., Costa, J.L.M., Pinto, J.A.O., Santos, D.A., De Araujo, S.A., Arrigoni-Blank, M.F., Bacci, L., Alves, P.B., Cavalcanti, S.C.A., & Blank, A.F. (2013). Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Vet Parasitol ,195(2013),198-202. https://doi: 10.1016/j.vetpar.2012.12.046.
8. De Oliveira Monteiro, C.M., Daemon, E., Silva, A.M., Maturano, R., & Amaral, C. (2010). Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res, 106(3), 615-9. https://doi : 10.1007/s00436-009-1709-1.
9. Díaz, E.L, Camberos, E.P., Herrera, G.A.C., Espinosa, M.E., Andrews, HE., Buelnas, N.A.P., Ortega, A.G., & Velázquez, M.M., (2019). Development of essential oil-based phyto-formulations to control the cattle tick Rhipicephalus microplus using a mixture design approach. Experimental parasitology,201, 26-33. https://doi : 10.1016/j.exppara.2019.04.008.
10. Djebir, S., Ksouri, S., Trigui, M., Tounsi, S., Boumaaza, A., Hadef, Y., & Benakhla, A.(2019). Chemical composition and acaricidal activity of the essential oils of some plant species of lamiaceae and myrtaceae against the vector of tropical bovine Theileriosis: Hyalomma scupense (syn. Hyalomma detritum). BioMed Research International. https://doi.org/10.1155/2019/7805467.
11. Dzemo, W.D., Thekisoe, O., Vudriko, P. (2022). Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon, 8 (1), e08718. https://doi.org/10.1016/j.heliyon.2022.e08718.
12. Escobar, A., Pérez, M., Romanelli, G., & Blustein, G. (2020).Thymol bioactivity: A review focusing on practical applications. Arabian Journal of Chemistry, 13(12), 9243-9269. https://doi.org/10.1016/j.arabjc.2020.11.009.
13. Gupta, S., Surbhi., & Kumar, S., (2021). Detection of deltamethrin resistance in cattle tick, Rhipicephalus microplus collected in Western Haryana state of India. J Arthopod Borne Dis 15 (4), 389-396. http//doi: 10.18502/jad.v15i4.10503.
14. Hu, Z., Chen, Z., Yin, Z., Jia, R., Song, X., Li, L., Zou, Y., Liang, X., Li, L., He, C., Lin, L., Lv, C., Zao, L., Su, G., Ye, G., Shi, F. (2015). In vitro acaricidal activity of 1,8-cineole against Sarcoptes scabiei var. cuniculi and regulating effects on enzyme activity. Parasitol Res, 114(8), 2959-67. https://doi: 10.1007/s00436-015-4498-8.
15. Kowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A., & Fecka, I.(2020). Thymol and thyme essential oil—new insights into selected therapeutic applications. Molecules, 25(18), 4125. https://doi: 10.3390/molecules25184125.
16. Klafke, G.M., Castro-Janer, E., Mendes, M.C., Namindome, A., & Schumaker, T.T.S. (2012). Applicability of in vitro bioassays for the diagnosis of ivermectin resistance in Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol, 184 (2-4), 212-20. https://doi.org/10.1016/j.vetpar.2011.09.018.
17. Lima, A.S., Milhomem, M.N., Monteiro, O.S., Arruda, A.C.P., De Castro, J.A.M., Fernandes, Y.L.M., Maia, J.G.S., & Costa-Junior, L.M. (2017). Seasonal analysis and acaricidal activity of the thymol-type essential oil of Ocimum gratissimum and its major constituents against Rhipicephalus microplus (Acari : Ixodidae).Parasitolology Research, 117(1), 59-65.https://doi.org/10.1007/s00436-017-5662-0.
18. Liu, Z., Li, Q.X., & Song, B.(2022). Pesticidal activity and mode of action of monoterpenes. J Agric Food Chem, 70(15), 4556-4571. https://doi : 10.1021/acs. java.2c00635.
19. Marchese, A., Orhan, I.E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., Izadi, M., Nabavi, S.M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem, 210, 402-14. https://doi : 10.1016/j.foodchem.2016.04.111.
20. Mello-Peixoto, E.C.T., Figueiredo, A., Novo, S.M.F., Porto, E.P., Valadares, F., Da Silva, L.P., & Da Silva, R.M.G. (2013). Application of Cymbopogon winterianus Jowitt and Azadirachta indica A. Juss in the control of Rhipicephalus (Boophilus) microplus. J. Med. Plants Res, 7(32), 2392–2398. https://doi.org/10.5897/JMPR12.1218.
21. Obaid, M.K., Islam, N., Alouffi, A., Khan, A.Z., Vaz, Jr, I.D.S., Tanaka, T., & Abid Ali. (2022). Acaricides resistance in ticks: Selection, diagnosis, mechanisms, and mitigation. Front Cell Infect Microbio 12, 941831.http//doi: 10.3389/fcimb.2022.941831.
22. Perez-Cogollo, L.C., Rodriguez-Vivas., R.I., Ramirez, C.G.T., & Miller, R.J. (2010). First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. Vet Parasitol, 168 ,165–169. https://doi. org/10.1016/j.vetpar.2009.10.021.
23. Platzer, M., Kiese, S., Tybussek, T., Herfellner,T., Schneider, F., Schweiggert-Weisz, U., & Eisner, P., (2022). Radical scavenging mechanisms of phenolic compounds : A Quantitative Structure-Property Relationship (QSPR) Study. Front Nutr. 9, 882458.http//doi: 10.3389/fnut.2022.882458.
24. Quadros, D.G., Johnson, T.L., Whitney, T.R, Olivier, J.D., & Chávez, A.S.O., (2020). Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or Utopia? Insects, 11(8), 490. https://doi.org/10.3390/insects11080490.
25. Queiroz, D.V.T., Campos, N.C., Nunes, E.T., Costa, A.V., Coelho, J.D., Trivilin, L.O., De Melo, D.C.A., Morais, P.A.B., Martins, I.V.F. (2020). 1,8-cineole and castor oil in sodium lauryl ether sulfate disrupt reproduction and ovarian tissue of Rhipicephalus (Boophilus) microplus. Med Vet Entomol , 34(3), 316-326. https://doi 10.1111/mve.12444.
26. Rodriguez-Vivas, R.I., Jonsson, N.N., & Bhushan, C. (2018). Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol Res, 117(1), 3-29. https://doi.org/10.1007/s00436-017-5677-6.
27. Scoralik, M.G., Daemon, E., de Oliveira Monteiro, C.M., & Maturano, R. (2012). Enhancing the acaricide effect of thymol on larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae) by solubilization in ethanol. Parasitol Res, 110(2), 645-8. https://doi : 10.1007/s00436-011-2539-5.
28. Selles, S.M.A., Kouidri, M., González, M. G., González, J., Sánchez, M., González-Coloma, A., Sanchis, J., Elhachimi, M., Olmega, S., Tercero, J.M., & Valcárcel, F. (2021). Acaricidal and repellent effects of essential oils against ticks: A review. Pathogens, 10 (11), 1379. https://doi.org/10.3390/pathogens10111379.
29. Tavares, C.P., Sabadin, G.A., Sousa, I.C., Gomes, M.N., Soares, A.M.S., Monteiro, C.M.O., Vaz Jr, I.S., & Costa-Junior, L.M. (2022). Effects of carvacrol and thymol on the antioxidant and detoxifying enzymes of Rhipicephalus microplus (Acari: Ixodidae). Ticks and Tick-Borne Diseases, 13(3), 101929. https://doi.org/10.1016/j.ttbdis.2022.101929.
30. Walker, A.R., Bouattour, A., Camicas, J.L., Estrada-Pen˜a A., Horak, I.G., Latif, AA., Pegram, R.G., & Preston, P.M. (2003). Ticks of domestic animals in Africa :A guide to identification of species. Bioscience Reports; Edinburgh, p.221.www.biosciencereports.pwp.blueyonder.co.uk.
31. Zielińska-Błajet, M., & Feder-Kubis, J.(2020). Monoterpenes and their derivatives-recent development in biological and medical applications. Int J Mol Sci, 21(19),7078. doi: 10.3390/ijms21197078.
Published
2023-08-31
How to Cite
Coulibaly, A., Hema, D. M., Kiendrebeogo, M., & Nebie, R. C. (2023). Comparative Study of Two Monoterpenes Effect on Rhipicephalus microplus Tick. European Scientific Journal, ESJ, 19(24), 34. https://doi.org/10.19044/esj.2023.v19n24p34
Section
ESJ Natural/Life/Medical Sciences