Deferrisation Physicochimique des Eaux Souterraines: Revue

  • Benjamain Tiadjoue Laboratoire des Technologies et Sciences Appliquées (LTSA) Université de Douala, Cameroon
  • Louis Monkam Laboratoire des Technologies et Sciences Appliquées (LTSA) Université de Douala, Cameroon
  • Jacques Sylvain Mbemmo Laboratoire des Technologies et Sciences Appliquées (LTSA) Université de Douala, Cameroon
Keywords: Déferrisation, eau potable, eau de consommation, caractéristique d’une eau, Physico-chimique

Abstract

Les sols ferrugineux que traversent les eaux souterraines perturbent parfois leur bonne qualité bactériologique, et influent fortement sur leur minéralisation.  De nombreuses études dans les pays au sud du Sahara révèlent un fort taux d’abandon à cause des fortes teneurs en fer (0 à 50 mg/l voir plus dans certains pays). Cette étude qui s’inscrit comme une synthèse des travaux sur la déferrisation des eaux    souterraines, est d’apporter une contribution à une meilleure compréhension des procédés existants et d’analyser les problèmes qu’ils rencontrent et qui pourront susciter davantage d’autres recherches dans le domaine.  Les résultats ont permis de noter que plusieurs technologies physicochimiques ont été développées pour l’enlèvement du fer et faisant intervenir plusieurs procédés tels que l’oxydation, l’adsorption, la coagulation-floculation, la précipitation. L’oxydation est le procédé le plus utilisé pour l’enlèvement du fer dans les eaux souterraines. Plusieurs facteurs perturbent son efficacité, comme l’influence du pH dont une élévation accélère la cinétique des ions Fer(II) et une réduction dans le cas contraire. Dans le processus de coagulation-floculation un dosage excessif du coagulant peut abaisser le pH et par conséquent la vitesse d’oxygénation du fer tandis qu’un dosage insuffisant conduit à une qualité insuffisante de l’eau. Une baisse de la température augmente la viscosité de l’eau, ralentit ainsi la coagulation et la décantation des flocs et diminue la plage optimale du pH. Ces travaux suscitent la nécessité de réaliser des études plus poussées pour proposer des solutions pour améliorer l’oxydation sur laquelle repose en grande partie la déferrisation des eaux souterraines.

 

The ferruginous soils through which groundwater flows sometimes affect its bacteriological quality and have a strong influence on its mineralization.  Numerous studies in countries south of the Sahara have revealed a high rate of abandonment due to high iron levels (0 to 50 mg/l or even more in some countries). The aim of this study, which is a synthesis of work on groundwater deferrization, is to contribute to a better understanding of existing processes and to analyze the problems they encounter, which may lead to further research in the field.  The results show that several physicochemical technologies have been developed for iron removal, involving processes such as oxidation, adsorption, coagulation-flocculation and precipitation. Oxidation is the most widely used process for iron removal from groundwater. Several factors affect its effectiveness, such as the influence of pH, which accelerates the kinetics of iron (II) ions when raised and reduces them when lowered. In the coagulation-flocculation process, an excessive dosage of coagulant can lower pH and consequently the rate of iron oxygenation, while an insufficient dosage leads to poor water quality. A drop in temperature increases water viscosity, thus slowing down coagulation and floc settling, and reducing the optimum pH range. These findings suggest the need for further studies to propose solutions for improving oxidation, on which groundwater deferrization is largely based.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Adgar A., Cox C.S. & Böhme T.J. (2000). Performance improvements at surface water treatment works using ANN-based automation schemes. Transactions Inst. Chem. Eng., vol.78, Part A, pp. 1026-1039.
2. Ahmad B.J., Chenga W.H., Lowa W.M., Nora’ainia A. M.J. & Megat M.N. (2005). Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, vol.182, pp.374-353.
3. Amirtharajah A. & Mills K.M. (1982). Rapid-mix design for mechanism of alum coagulation. J. Am. Water Works Ass, vol.74 (4): pp 210-216.
4. Apha Awwa & Wef. (1998). Standard Methods for the Examination of Water and Wastewater. Washington, Government Printing Office, pages multiples.
5. Bartels J.H.M., Burlingame G.A. & Suffet LH. (1986). Flavor profile analysis: taste and odor control for the future. Journal American Water Works Association, vol. 78(3), pp 50-55.
6. Baxter C.W., Zhang Q., Stanley S.J., Shariff R., Tupas R.R.T. & Stark L. (2001a). Drinking water quality and treatment: the use of artificial neural networks. Can. J. Civ. Eng., vol. 28 pp. 26-35.
7. Benefield L.D., Judkins J.F. & Weand B.L. (1982). Process Chemistry for Water and Wastewater Treatment. Prentice-Hall, Englewood Cliffs, p. 212.
8. Böhme T.J., Cox C.S. & Lowdon A. (1999). Performance assessment of a neuro self-tuning PI controller to be used at a water treatment plant: Proceedings of the American Control Conference, San Diego, CA, ÉtatsUnis, pp. 3216-3220.
9. Bombaugh K., Dark W. & Constello L. (1967) Application of streaming current detector to control probems. 13th National ISA Analysis Instrument Symposium, Huston, USA.
10. Boucha Lamrini, Le Lann M.V., El Khadr Lakhal et Ahmed B. (2007). Gestion supervisée d’ne unité de coaguation pour la potabilisation des eaux à partir d’une méthodologie d’apprentissage et d’expertise. Revue des sciences de l’eau, vol.20(4), pp 325-338.
11. Boureima Cissé. (1992). Etude des performances de deux unités expérimentales de déferrisation des eaux de forages au Burkina Faso. Mémoire de fin d’études en Master.
12. Brodart E., Bordet J., Bernazeu F., Mallevialle J. & Fiessinger F. (1989). Modélisation stochastique d’une usine de traitement de l’eau potable. 2ème Rencontre internationale Eau et Technique Avancées, Montpeller.
13. Cardot C. (1999). Les traitements de l’eau : Procédés physicochimiques et biologiques. Ellipses Edition Marketing S.A., p. 247.
14. Clark M.M. & Heneghan K.S. (1991). Surface Water Treatment by Combineci Ultrafiltration IPAC Adsorption coagulation for Removal of Natural Organics, Turbidity and Bacteria'; Proceedings of Membrane Technologies. Water Industry, pp. 345-358.
15. Cleasby J.L. (1975). Iron and Manganese Removal - A Case Study. Journal of the American Water Worh Association Vol. 67, pp. 147- 149.
16. Couillard D., Lafrance P. et Lessard S. (1992). Evaluation de la qualité organoleptique de l’eau potable dans le réseau de distribution de East-Broughton (Beauce) et suggestion d’un procédé de traitement-Université du Québec.
17. Côté P., Mourato D., GUngerich, C., Russell, J. & Houghton, E. (1998). lmmersed Membrane Filtration for the Production of Drinking Water: Case Studies. Presented at ISWA Conference ''Membranes in Drinking mid Industrial Water Production, Amsterdam, Pays- Bas, p. 9.
18. Dempsey B.A. (1998) Polyaluminum chloride and alum coagulation of clay-fulvic acid suspensions. Environment International, Vol. 24, pp. 899-910
19. Dice J.E (1975). The challenge to the AWWA taste and odor control committee. Proceedings of the Water Quality and Technology Conference, Atlanta, Georgia. American Water Works Association, Denver, Colorado, pp. 46-66.
20. El Azher N., Gourich B., Vial C., Behaj Soulami. & Ziyad M. (2008). Study of ferrous oxidation in Morocco drinking water in an airlift reactor. Chemical Engineering and Processing, vol.47, pp. 1877-1886.
21. Ellis D., Bouchard C. & Lantagne G. (2000). Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination, vol. 130, pp. 255-264.
22. Evans, J., Enoch, C., Johnson, M. & Williams P. (1998). Intelligent based auto-coagulation control applied to a water treatment works. Proceedings of International Conference on Control, pp. 141-145.
23. Ghosh M.M., O' Connor J.T. & Engelbrecht R.S. (1967). Removal of iron from ground water by filtration. JAWWA, vol. 59(7), pp. 878-896.
24. Godart H. (2008). Traitements des eaux de distribution. Traité Construction, vol.C.5 200. Technique de l’ingénieur.
25. Goné D. L. (2001). Contribution des paramètres physico-chimiques des eaux souterraines à l’étude fonctionnement des systèmes hydrauliques en milieu fissuré de la région semi-montagneuse de Man (Ouest de la Côte d’Ivoire). Thèse de doctorat-Université d’Abobo-Adjamé. Côte d’Ivoire. (214 p.).
26. Hamdouni A, Montes-Hernandez G, Tlili M, Findling N, Renard F. Putnis C. (2017). Removal of Fe(II) from groundwater via aqueous portlandite carbonation and calcite-solution interactions, Chemical Engineering. Vol.283, pp.401–41.
27. Hatva T. (1988). Treatment of groundwater with slows and filtration. Water Science Technology vol.20(3), pp.141–147.
28. Heddam S., Abdelmalek B. & Noureddine D. (2012). Modélisation de la dose de coagulant par les systèmes à base d’inférence floue (ANFIS) application à la station de traitement des eaux de Boudouaou (Algérie). Revue des Sciences de l’Eau, Vol. 25 (1), pp. 1-19.
29. Hem J.D. (1992). Study and interpretation of the chemical characteristics of natural water. Third Edition, United States Geological Survey Water-Supply Paper 2254.
30. Hercberg S. (1991). Evaluation du statut en fer des populations : choix des indicateurs et dimension du problème de la carence en fer en termes de sante publique. Thèse de Doctorat en science médicale de l’Université Paris 7.
31. Hernandez, H & Lann, M.V. (2006). Development of a neural sensor for on-line prediction of coagulant dosage in a potable water treatment plant in the way of its diagnosis. Iberamia Sbia, vol. 4140, pp. 249–257.
32. Holluta J. & Koelle W. (1964). Oxidation of ferrous ion by air oxygen. GWF, das Gas- und Wasserfach, vol. 105(18), pp. 471–474.
33. Huck P.M. (1990). Measurement of biodegradable organic matter and bacterial growth potential in drinking water. Journal American Water Works Association, vol. 82(7): pp. 78-86.
34. Just G. (1908). Kinetic investigation of the autoxidation of ferrous bicarbonate in aqueous solution. Journal of physical chemistry, vol.63, pp. 385-420.
35. Joo S.H. & Grable J.E. (2004). An exploratory frameword of the determinants of financial satisfaction. Journal of Family and Ecoomivs Issues, vol. 25, pp.25-50.
36. Kamagaté B., Séguis L., Goné Droh L., Favreau G. et K. Kouadio. (2008). Processus hydrogéochimiques et séparation d’hydrogrammes de crue sur un bassin versant en milieu soudano-tropical de socle au Bénin (Donga, haute vallée de l’Ouémé). Revue des sciences de l'eau / Journal of Water Science. vol. 21(3), pp. 363–372.
37. King D.W. (1998). Role of Carbonate Speciation on the Oxidation Rate of Fe(II) in Aquatic Systems. Environmental Science and Technology, vol. 32 (19), p. 2997-3003.
38. Krasner S.W., Hwang C.I. & Mcguire, M.J. (1983). A standard method for quantification of earthy-musty odorants in water, sediments, and algal cultures. Water Science and Technology, vo.15(6/7), pp. 127-138.
39. .Lakhili Ferdaous., Benabdelhadi M., Bouderka N., Lahrach H. et Lahrach A. (2015). Etude de la qualité physicochimique et de la contamination métallique des eaux de surface du bassin versant de Beht (Maroc). European Scientific Journal (ESJ), vol.11, pp.132-147.
40. Lamrini B., Le Lann M.V., Benhammou A. & LakhaL K. (2005b). Detection of functional states by the “Lamda” classification technique: application to a coagulation process in drinking water treatment. Elsevier C.R. Phys., vol.6, pp.1161-1168
41. Larsson B. & H. Tjälve. (1978). Studies on the melanin-affinity of metal ions. Acta physiol. Scand, vol. 104, pp 479–484.
42. Lefebvre E. et B. Legube (1993). Coagulation floculation par le chlorure ferrique de quelques acides et phénols en solution aqueuse. Water Res., vol. 27, pp. 433-447.
43. Lerk C.F. (1965). Grandchildren aspects of the ontijzering of grondwater. PhD Dissertation Technical University Delft, The Netherlands (in Dutch).
44. Lind C. (1994a).Coagulation control and optimization: Part one. Pub. Works, pp. 56-57.
45. Maier H.R., Dandy GC. (1996a). The use of Artificial Neural Network for the prediction of water quality parameter. Water Research, vol. 32 pp 1013-1022.
46. Maillot S., Duchesne G., Talbot A.N. et Rousseau D. Chaumont, (2006). Approvisionnement en eau potable et santé publique : projections climatiques en matière de précipitations et d’écoulements pour le sud Québec - Rapport de recherche No R-977 - Institut national de santé publique du Québec.
47. McBainn, J. W., (1901). Oxidation of Ferrous Solutions by Free Oxygen. Journal of Physical Chemistry, vol.5, pp. 623-638.
48. Mejri W. (2017). Contribution à l’étude de l’élimination du fer ionique de l’eau et l’interaction fer-carbonate de calcium. Thèse de doctorat, INSAT, Université de Carthage (Tunisie).
49. Michalakos G. D., Nieva, J. M., Vaynes, D. V. & Lybertos, G., (1997). Removal of iron from potable water using a trickling filter. Water Resource. Vol. 31(5), pp. 991–996.
50. Millero, J.F. & Izaguirre, M. (1989). Effect of ionic strength and ionic interactions on the oxidation of Fe(II). Journal of Solution and Chemistry, vol. 18 (6), pp. 585-599.
51. Millero F.J., Sotolongo S. & Izaguirre M. (1987). The oxidation kinetics of Fe(II) in seawater. J. Geochimica and Cosmochimica Acta. Vol. 51, pp. 793– 801.
52. Mirsepassi A., Cathers B. & Dharmappa H. (1995). Application of artificial neural networks to the reat time operation of water treatment plants. IEEE International Conference on Neural Nteworks Proceedings, vol.1, pp. 516-521.
53. Mohd R., Rozainy M.A.Z., Rhahimi J., Aizat A., Mohd N.A;, and Chee1 W.K. (2016). Lattice-Boltzmann Study of Cascade Aerator System - Australian Journal of Basic and Applied Sciences,
54. Mohtadi M.F. et P .N. Rao (1973). Effect of temperature on flocculation of aqueous dispersions. Water Res., Vol. 7, pp. 747-767.
55. Mollah M.Y.A., Morkovsky, P., Gomes J.A., Kesmez M., Parga, J. & Cocke J. (2004). Fundamentals, present and future perspectives of electrocoagulation, Journal of Hazardous Materials, vol. 114, pp. 522-530
56. Montiel A.J. (1983). Municipal drinking water treatment procedures for taste and odour abatement. Water Science and Technology, vol.15, pp. 279-289.
57. Morin G., Cluis D., Couillard D ; Jones H. et Gauthier J. M. (1984). Modélisation de l’oxygène dissous et de la demande biochimique à l’aide du modèle quantité-qualité CEQUEAU. INRS –EAU QUEBEC (155).
58. Mouchet P., Magnia J., Muounie P.Pd.A. et Fressonner B. (1985). Élimination du fer et du manganèse contenus dans les eaux souterraines: problème classiques, progrès récents, Water Supply, Vol.3, pp. 137-149
59. Mouchet P. (1992). From conventional to biological removal of iron and manganese in France. J. AWWA, vol.84(4), pp.158–167.
60. Nahm E., LEE S., Woo K., Lee B. & Shin S. (1996). Development of an optimum control software package for coagulant dosing process in water purification system. Proceedings of the Society of Instrument and Control Engineers Annual Conference, Tottori, Japon, vol. 35, pp. 1157-1161.
61. Namkung E. & Rittmann B.E., (1987). Removal of taste- and odor-causing compounds by biofilms grown on humic substances. Journal American Water Works Association, vol. 79(7), pp. 107-112.
62. Nana R., Tamini Z. & Sawadogo M. (2009). Effets d’un stress hydrique intervene pendant le stade végétatif et la hase de floraison chez le gombo. Int. J ; Vhem. Sci., vol. 3(5), pp.1161-1170.
63. Nemade P.D., Kadam A.M. & Shankar H.S. (2008). Remediation of arsenic and iron from water using constructed soil filter. A novel approach. Asia Pacific J. Chemical Eng., vol.3, pp. 497-502.
64. Not Christelle. (2006). Caractérisation de l'oxydation du fer ferreux en présence de deux bactéries ferro-oxydantes neutrophiles, du champ hydrothermal de Loihi, Hawaï. Mémoire de Maîtrise en biologie. Université du Québec-Montréal,
65. O’Connor J. T. (1971). Iron and manganese in Water Quality and Treatment, A Handbook of Public Water Supplies, chap. 11. McGraw Hill, New York, pp. 378–396.
66. Olson L.L and Twardowski C.J., (1975). FeCO3 vs Fe(OH)3 precipitation in water-treatment plants. Journal of the American Water Works Association, Vol.16, pp. 150-153
67. OMS. (1986). Contrôle de la qualité de l’eau de boisson destinée à l’approvisionnement des petites collectivités. Vol. 3, Genève, 134 p. 15.
68. Pacini V.A., Ingalinela A.M. & Sanguinetti G. (2005). Removal of iron and manganese using biological roughtinh up flow filtration technology. Water Res. 39(18): 446375.
69. Park S., Bae H., & Kim C. (2008). Decision model for coagulant dosage using genetic programming and multivariate statistical analysis for coaguantion/flocculation at water treatment process. Korean J. Chem. Eng., vol. 25 (6) pp. 1372-1376.
70. Potgieter J.H, Mccridler R.., Sihlali Z., Schwarzer R. & Basson N.. (2005).Removal of Iron and Manganese from Water with a High Organic Carbon Loading. Part I: The Effect of Various Coagulants. Water Air, and Soil Pollution, vol.162, pp.4959
71. Rahma Fakhfekh Hamdeni. (2018). Performances du système hybride précipitation / microfiltration et de la nanofitration dans l’élimination du fer pour la potabilisation de l’eau. Thèse de Doctorat, Université de Lyon.
72. Ratnaweera H. et Blom H. (1995). Optimisation of coagulant dosing control using real-time models selective to instrument errors. Water Supp., volume 13, p. 285-289.
73. Robenson A., Abd Shukor S.R. & Aziz N. (2009). Development of process inverse Neural Network Model to determine the Required alum dosage at segama water treatment plant Sabah, Malaysia. Computer Aided Chemical Engineering, vol. 27, pp. 525-530.
74. Roques H. (1990). Fondements théoriques du traitement chimique des eaux. Technique et Documentation-Lavoisier-France, pp. 243-283.
75. Rott, U. (1985). Physical, chemical and biological aspects of the removal of iron and manganese underground. Water Supply, vol. 3(2), pp.143–150.
76. Salvato J.A. (1992). Environmental Engineering and Sanitation, 4th edn. John Wiley and Sons, New York.
77. Samira Azzaoui, Mohammed El Hanbali et Marc Leblanc, (2002). Cuivre, plomb, fer et manganèse dans le bassin versant du Sebou ; Sources d’apport et impact sur la qualité des eaux de surface. Water Qual. Res. J-Canada, vol. 37(4), pp. 773–784.
78. Seghairi N., Mimeche L., Bouzid A. et Ayachi Y. (2017). Traitement des eaux usées par coagulation-floculation en utilisant le sulfate d’aluminium comme coagulant. Journal of Water an Environment Sciences, vol.1, pp. 230-234.
79. Sharma S.K. (2001). Adsorptive iron removal from groundwater. Thèse de doctorat, Wageningen University, The Netherlands.
80. Sharma S.K., Petrusevski B. & Schippers J.C. (2005). Biological iron removal from groundwater. Water Supply, vol. 54, pp. 239-247.
81. Sigwart C., Hemmerich P. & Spence J. T. (1968). Binuclear mixed-valence copper acetate complex as a model for copper-copper interaction in enzymes, Inorg., vol.12, pp 2545–2548.
82. Soggard E.G., Medenwaldt R. & Abraham-Peskir J.V. (2000) Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology. Water Resource. Vol.34(10), pp.2675–2682.
83. Sommerfeld E.O. (1999). Iron and Manganese Removal Handbook. American Water Works Association, Denver, CO.
84. Souhaila Trabelsi. (2011). Etudes de traitement des lixiviats des déchets urbains par les Procédés d’Oxydation Avancée photochimiques et électrochimiques. Application aux lixiviats de la décharge tunisienne “Jebel Chakir”. Thèse de Doctorat, Université Paris-Est et Institut National des Sciences Appliquées et de Technologie (Université Carthage-Tunisie).
85. Sperring D.A., Chow C.W., Mulcahy D.E., Dvey D.E. & Hsakard M.R. (1992). Neural network applied to sensory signal processing determination of copper in water. Journal of intelligenct Materials Systems and Structures, vol.3, pp. 418-431.
86. Stegpniak L., Kegpa U., Stan´czyk-Mazanek E., (2008). The research on the possibility of ultrasound field application in iron removal of water, Desalination, vol. 223, pp. 180–186.
87. Stumm W. & Lee G. F., (1961). Oxygenation of ferrous iron. Indust. Engng. Chem., vol.53(2), pp.143–146.
88. Sung W. & Morgan J.J. (1980). Kinetics and Product of Ferrous Iron Oxygenation in Aqueous Systems. Environmental Science and Technology, vol. 14, pp. 561-568.
89. Tahir S.S. and Rauf N. (2006). Removal of Cationic Dye from Aqueous Solutions by Adsorption onto Bentonite Clay. Chemosphere, vol.63, pp.1842-1848.
90. Tamura H., Goto K. & Nagayama M. (1976). Effect of ferric hydroxide on the oxygenation of ferrous ions in neutral solutions. Corrosion Science, vol.16, pp. 197-207.
91. Tessier A., Fortin D., Belzile N., Devitre R.R & Leppard G.G. (1996). Meta1 Sorption to Diagenetic Iron and Manganese Oxyhydroxides and Associated Organic Matter: Narrowing the Gap between Field and Labomtory Measurements. Geochimica et Cosmochimica Acta; vol. 60, pp. 387404.
92. Twort, A. C., Ratnayaka, D. D. & Brandt, M. J. (2000). Water Supply, 5th edn. Arnold, London
93. Valentin, A. 1999. Application de la méthode d’analyse morphométrique en réseau à la différenciation des espèces Sebastes fasciatus et Sebastes mentella dans le golfe du Saint-Laurent. Mémoire de Maîtrise, Université du Québec à Rimouski, Rimouski, 137 p.
94. Weinberg et Geoffrey. (1996). Iron overload as a mechanism for the lowered survival in AIDS patients receiving dapsone-iron protoxalate for secondary prophylaxis of Pneumocystis carinii pneumonia. The Journal of infectious diseases, vol. 174(1): pp. 241-2.
95. Weishaar J.L., G.R. Aiken, B.A., Bergamaschi, M.S., Fram, R., Fujii & K. Mopper. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Science Technology, Vol. 37, pp. 4702-4708.
96. Wong J.M. (1984). Chlorination-filtration for iron and manganese removal. Journal Awawa. Vol. 76(1), pp.76-79.
97. Wu G.D. & Lo S.L. (2008). Predicting real-time coagulation dosage in water treatment by artificial neural networks and artificial networks based fuzzy inference system. Engineering Applications of Artificial Intelligence, vol. 21(8), pp 1189-1195.
98. Wu G.D. & Lo S.L. (2010). Effects of data normalization and inherent factor on decision of optimal coagulation dosage in water treatment. Artificial Neural Ntework Expert Systems with Applications, vol. 37, pp 4974-4983.
99. Yu R., Kang S., Law S.L. et Chen M. (2000). Application of artificial neural network to control the coagulant dosing in water treatment plant. water Sci. Technol., vol.42, pp. 403-408
100. Zogo D. (2010). Etude de l’élimination du fer et du manganèse lors de la potabilisation de l’eau d’une retenue en cours d’eutrophisation : Cas de la retenue d’eau de l’Okpara à Parakou au Benin. Université d’Abomey-Calavi, Cotonou. Journal of Water Resource and Protection, vol.6 No.14, pp. 2093-2101.
Published
2023-12-27
How to Cite
Tiadjoue, B., Monkam, L., & Mbemmo, J. S. (2023). Deferrisation Physicochimique des Eaux Souterraines: Revue . European Scientific Journal, ESJ, 24, 899. Retrieved from https://eujournal.org/index.php/esj/article/view/17605
Section
ESI Preprints