Enhancing Hygiene and Technical Properties of Ceramic Tiles through Moroccan Phosphate Additives

  • Fatima Zahra Boutaleb Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
  • Nadia Boutaleb Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
  • Bouchaib Bahlaouan Higher Institutes of the Nursing Professions and Techniques of Health ISPITS Casablanca, Morocco
  • Meryem Hadidi Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
  • Ghita Radi Benjelloun Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
  • Fatima Azzahra Louanjli Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
  • Fatima Ezzahra Doublali Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
  • Said El Antri Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA, Morocco
Keywords: Mining; Phosphate; Ceramic tiles; Bacterial bioadhesion; Biofilm; Mechanical properties

Abstract

This study offers a simple solution to manufacture ceramic tiles with good technical and hygienic properties. This solution consists of integrating the phosphate product from Morocco in the industrial formulation of ceramic tiles, to produce materials in compliance with the criterion of the ISO standard. For phosphate products, three grades were studied: HG-high grade, MG-medium grade, and LG-low grade. The results show that for materials containing these additives, there is both an effect of the concentration and type of additive on technical and hygienic properties. The mechanical property is improved when the incorporated component was richer in P2O5. Only the use of HG-high grade and MG-medium grade as an additive at least 15% makes it possible to satisfy the mechanical requirement. The anti-biofilm effect of natural phosphate (PN) as an additive to manufacture ceramic tiles is confirmed, it may prevent bio adhesion and biofilm formation at almost 75% for the HG-high grade and MG-medium grade. This solution could interest professionals and all users who care about the state of hygiene of their ceramic materials sensible to the formation of biofilm, like orthopaedic implants, swimming pool tile…etc.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Afenzar, A., & Essamoud, R. (2017). Early Mesozoic Detrital and Evaporitic Syn-Rift Series of Mohammedia-Benslimane-ElGara-Berrechid Basin (Meseta, Morocco): Sedimentary and Palaeoenvironmental Evolution and Comparison with Neighboring Basins. International Journal, 6(1), 596-621.
https:// doi.org/10.23953/cloud.ijaese.330
2. Amin, S. H. K., Elmahgary, M. G., & Abadir, M. F. (2019). Preparation and characterization of dry pressed ceramic tiles incorporating ceramic sludge waste. Ceram. Silik, 63, 11-20.
https:// doi.org/10.13168/cs.2018.0041
3. ASTM, American Society for Testing Material, Standard Method for Particle-size analysis of Soil, D. 422-63 (Reapproved 1972) Annual Book of ASTM Standards. Part, 1974, 19, 70-80.
4. Boutaleb, F., Boutaleb, N., Bahlaouan, B., Deblij, S., El Antri, S. (2020a). Effect of Phosphate Mine Tailings from Morocco on the Mechanical Properties of Ceramic Tiles, International Journal of Engineering Research and Technology (IJERT) Volume 09, Issue 02 (February 2020). https:// doi.org/10.17577/IJERTV9IS020092
5. Boutaleb, F., Boutaleb, N., Bahlaouan, B., Deblij, S., El Antri, S. (2020b). Production of ceramic tiles by combining Moroccan phosphate mine tailings with abundant local clays. Mediterranean Journal of Chemistry, 10(6), 568-576.
https:// doi.org/10.13171/mjc10602006221445nb
6. Boutaleb, F., Boutaleb, N., Bahlaouan, B., El Antri, S. (2020c). Valorization of phosphate mining waste rock in Morocco in the manufacture of ceramic tiles. Valorisation du stérile d’exploitation des phosphates au Maroc dans la fabrication de carreaux céramiques (Fr). TSM 3 - Page(s) 37-43. https:// doi.org/10.36904/tsm/202003037
7. Boutaleb, N., Latrache, H., & Sire, O. (2008a). Interactions bactéries-matériaux dans les canalisations d’eau potable. Techniques Sciences Méthodes, 11, 73-80. https:// doi.org/10.1051/tsm/200811073
8. Boutaleb, N., Latrache, H., & Sire, O. (2008b). Bioadhésion bactérienne dans les réseaux d’eau potable: effets des matériaux et des facteurs environnementaux. Techniques Sciences Méthodes, (5), 37-43. https:// doi.org/10.1051/tsm/200805037
9. El Berkaoui, M., El Adnani, M., Hakkou, R., Ouhammou, A., Bendaou, N., & Smouni, A. (2021). Phytostabilization of phosphate mine wastes used as a store-and-release cover to control acid mine drainage in a semiarid climate. Plants, 10(5), 900. https:// doi.org/10.3390/plants10050900
10. El Omari, H., Boutaleb, N., Bahlaouan, B., Mekouar, M., Jrifi, A., Aitlefqih, S., Cagnon, B., Lazar, S., El Antri, S., (2018). Canalisations d’eau potable: une nouvelle formulation de tubes PVC anti-biofilm. 407, 96-101. Eau, l'Industrie, les Nuisances.
https://www.scopus.com/record/display.uri?eid=2-s2.0-85041960707&origin=inward&txGid=1c0e0b835112b238011711298013b723
11. El Omari, H., Boutaleb, N., Bahlaouan, Oualich, S., Jrifi, A., Aitlefqih, S., Lazar, S., El Antri S., (2017). Drinking water pipeline: New PVC formulation anti-biofilm for the Moroccan industry. Journal of Materials and Environmental Science (JMES) Volume 8, Issue 12, Page 4444-4450.ISSN: 2028-2508.
https:// doi.org/10.26872/jmes.2017.8.12.469 H.
12. El Ouahabi, M., Daoudi, L., & Fagel, N. (2014). Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry. Clay Minerals, 49(1), 35-51. https:// doi.org/10.1180/claymin.2014.049.1.04
13. El Yakoubi, N., Aberkan, M'hamed, & Ouadia, M. (2006). Use potentialities of Moroccan clays from the Jbel Kharrou area in the ceramic industry. Comptes Rendus Goescience, 338(10), 693-702. https:// doi.org/10.1016/j.crte.2006.03.017
14. Ferraz, M. P., Monteiro, F. J., Giao, D., León, B., González, P., Liste, S., Serra, J., Arias, JL. & Pérez Amor, M. (2004). CaO-P2O5 glass-hydroxyapatite thin films obtained by laser ablation: Characterisation and in vitro bioactivity evaluation. Key Engineering Materials, 254, 347-350.https://doi.org/10.4028/www.scientific.net/KEM.254-256.347
15. Hakkou, R., Benzaazoua, M., & Bussière, B. (2008). Acid mine drainage at the abandoned Kettara mine (Morocco): 1. Environmental characterization. Mine Water and the Environment, 27, 145-159. https:// doi.org/10.1007/s10230-008-0036-6.
16. Hakkou, R., Benzaazoua, M., & Bussiere, B. (2009). Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water and the Environment, 28, 206-218. https:// doi.org/10.1007/s10230-009-0081-9
17. Hakkou, R., Benzaazoua, M., & Bussière, B. (2016). Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: challenges and perspectives. Procedia Engineering, 138, 110-118. https:// doi.org/10.1016/j.proeng.2016.02.068
18. Harti, S., Cifredo, G., Gatica, J. M., Vidal, H., & Chafik, T. (2007). Physicochemical characterization and adsorptive properties of some Moroccan clay minerals extruded as lab-scale monoliths. Applied clay science, 36(4), 287-296. https:// doi.org/10.1016/j.clay.2006.10.004
19. Huang, L., Li, X., & Nguyen, T. A. (2015). Extremely high phosphate sorption capacity in Cu-Pb-Zn mine tailings. PLoS One, 10(8), e0135364. https:// doi.org/10.1371/journal.pone.0135364
20. Laibi, A. B., Gomina, M., Sorgho, B., Sagbo, E., Blanchart, P., Boutouil, M., & Sohounhloule, D. K. (2017). Caractérisation physico-chimique et géotechnique de deux sites argileux du Bénin en vue de leur valorisation dans l’éco-construction. International Journal of Biological and Chemical Sciences, 11(1), 499-514.
https:// doi.org/10.4314/ijbcs.v11i1.40
21. Mabroum, S., Aboulayt, A., Taha, Y., Benzaazoua, M., Semlal, N., & Hakkou, R. (2020). Élaboration de géopolymères à base de sous-produits argileux issus des mines de phosphate pour des applications de construction. Journal de la production plus propre , 261 , 121317. https://doi.org/10.1016/j.jclepro.2020.121317
22. Mehahad, M. S., & Bounar, A. (2020). Phosphate mining, corporate social responsibility and community development in the Gantour Basin, Morocco. The Extractive Industries and Society, 7(1), 170-180. https:// doi.org/10.1016/j.exis.2019.11.016
23. Moukannaa S., Loutou M., Benzaazoua M., Vitola L., Alami J., Hakkou R., Recycling of phosphate mine tailings for the production of geopolymers, J. Clean. Prod, 185, 891–903. (2018)
24. Nie, Y., Dai, J., Hou, Y., Zhu, Y., Wang, C., He, D. et Mei, Y. (2020). Un processus efficace et respectueux de l'environnement pour la réduction du SO2 en utilisant les résidus miniers de phosphate comme adsorbant. Journal des matières dangereuses , 388 , 121748. https://doi.org/10.1016/j.jhazmat.2019.121748
25. NM ISO 10545-3., Carreaux et dalles céramique - Partie 3: Détermination de l’absorption de l’eau, de la porosité ouverte, de la densité relative et la densité apparente (2017)
26. NM ISO 10545-4., Carreaux et dalles céramique - Partie 4: Détermination de la résistance à la flexion et module de rupture (2017)
27. Ramos, J. V. H., Anselme, K., Simon-Masseron, A., & Ploux, L. (2018). Bio-sourced phosphoprotein-based synthesis of silver-doped macroporous zinc phosphates and their antibacterial properties. RSC advances, 8(44),25112-25122. https://doi.org/10.1039/C8RA04438D.
28. Sadik, C., El Amrani, I., & Albizane, A. (2012). Influence de la nature chimique et minéralogique des argiles et du processus de fabrication sur la qualité des carreaux céramiques. In MATEC Web of Conferences (Vol. 2, p. 01016). EDP Sciences.
https:// doi.org/10.1051/matecconf/20120201016
29. Sawadogo, M., Zerbo, L., Seynou, M., Sorgho, B., & Ouedraogo, R. (2014). Technological properties of raw clay based ceramic tiles: Influence of talc/properties technologiques de careaux céramiques à base d’argiles : Influence d’un talc naturel. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 15(3),231.https://pubs.ub.ro/dwnl.php?id=CSCC6201403V03S01A0004
30. Scrivener, K. L., Juilland, P., & Monteiro, P. J. (2015). Advances in understanding hydration of Portland cement. Cement and Concrete Research, 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025
31. Weng, C. H., Lin, D. F., & Chiang, P. C. (2003). Utilization of sludge as brick materials. Advances in environmental research, 7(3), 679-685. https:// doi.org/10.1016/s1093-0191(02)00037-0
32. Yang, Y., Wei, Z., Chen, Y. L., Li, Y., & Li, X. (2017). Utilizing phosphate mine tailings to produce ceramisite. Construction and building materials, 155, 1081-1090.
https:// doi.org/10.1016/j.conbuildmat.2017.08.070
33. Yonghao Y., Wei Z., Chen Y., Li Y., Li X. (2017). Utilizing phosphate mine tailings to produce ceramisite. Construction and Building Materials; 155:1081-1090.
34. Zheng, K., Zhou, J., & Gbozee, M. (2015). Influences of phosphate tailings on hydration and properties of Portland cement. Construction and Building Materials, 98, 593-601.
https:// doi.org/10.1016/j.conbuildmat.2015.08.115
35. Zine, H., Elgadi, S., Hakkou, R., Papazoglou, E. G., Midhat, L., & Ouhammou, A. (2020). Wild plants for the phytostabilization of phosphate mine waste in semi-arid environments: a field experiment. Minerals, 11(1),42.https://doi.org/10.3390/min11010042
Published
2024-02-29
How to Cite
Boutaleb, F. Z., Boutaleb, N., Bahlaouan, B., Hadidi, M., Benjelloun, G. R., Louanjli, F. A., Doublali, F. E., & El Antri, S. (2024). Enhancing Hygiene and Technical Properties of Ceramic Tiles through Moroccan Phosphate Additives. European Scientific Journal, ESJ, 20(6), 104. https://doi.org/10.19044/esj.2024.v20n6p104
Section
ESJ Natural/Life/Medical Sciences