Characterization of the vegetation cover and water erosion dynamics in the Aghien lagoon catchment

  • Serge Ehouman Koffi Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
  • Amidou Dao Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
  • Dabissi Djibril Noufe Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
  • Mamadi Ouedraogo Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
  • Nagnon Bernard Yeo Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
  • Luc Seguis IRD, UMR Hydrosciences, Université de Montpellier 2, France
  • Jean Louis Perrin IRD, UMR Hydrosciences, Université de Montpellier 2, France
  • Bamory Kamagate Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
  • Lancine Droh Gone Laboratoire de Géosciences et Environnement, Université Nangui Abrogoua, Côte d’Ivoire
Keywords: Erosion, lagoon Aghien, Abidjan, GIS

Abstract

Soil erosion affects land quality and water resources. The present research aimed to estimate spatio-temporal changes in land-use/land-cover pattern and soil erosion in the lagoon Aghien watershed in Côte d'Ivoire. This study was carried out by using Landsat imageries of 2016 and 2020. Images were classified into categories using supervised classification by the maximum likelihood algorithm. Universal Soil Loss Equation modeling was applied in a GIS environment to quantify the potential soil erosion risk. The area of bare soil/Habitats and crops/Fallow increased by 2981 ha (37.8%) and 2642 ha (17.58%) during 2016–2020. The high soil losses are located on the slopes of the rivers and valleys adjacent to the Aghien lagoon, which are also naturally favored by the steepness of the slopes and their length and inclination. However, the average soil loss values were 60.65% in 2016 and 47.64% in 2020. However, the very low and low soil loss values are scattered over the watershed for an area of 34441.52 ha corresponding to a rate of 94.36% in 2016, in 2020 they occupy an area of 34956.76 ha with a rate of 95.77%. On the other hand, high and very high soil losses are insignificant, corresponding to rates of 0.95% and 0.60% in 2016 and 2020 respectively. However, most of the soil loss in the watershed is due to moderate erosion, occupying areas of 1712.19 ha (4.69%) and 1305.77 ha (3.58%) also in 2016 and 2020.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Abé, J., N’doufou, G. H. C., Konan, K. E., Yao, K. S., Bamba, S. B., 2014. Relations entre les points critiques d’érosion et le transit littoral en Côte d’Ivoire. Africa Geoscience Review. 21(1-2). 1-14.
2. Adopo, K. L., Akobe, A. C., Etche, M., Monde, S., Aka, K., 2014. Situation de l’érosion Côtière au Sud-est de la Côte d’Ivoire. entre Abidjan et Assinie. Revue Ivoirienne de Science et Technologie. 24. 223-237.
3. Aké, G. É., Kouadio, B. H., Adja, M. G., Ettien, J. B., Effebi K. R., Biémi, J., 2012. Cartographie de la vulnérabilité multifactorielle à l'érosion hydrique des sols de la région de Bonoua (Sud-Est de la Côte d'Ivoire). Physio-Géo. Géographie physique et environnement. (Volume 6). 1-42. https://doi.org/10.4000/physio-geo.2285
4. Almaaitah, R., Azhari, A., Asri, R., 2018. Spatial Distribution Of Soil Erosion Risk Using Rusle, Rs And Gis Techniques. International Journal of Civil Engineering and Technology, 9(10), 681-697. http://www.iaeme.com/IJCIET/index.as
5. Anache, J. A. A., Bacchi, C. G. V., Panachuki, E., Sobrinho T. A., 2016. Assessment of methods for predicting soil erodibility in soil loss modeling. Geociências (São Paulo), 34(1), 32-40.
6. Batista, P. V. G., Silva, M. L. N., Silva, B. P. C., Curi, N., Bueno, I. T., Júnior, F. W. A., Quinton, J., 2017. Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin-Brazil. Catena, 157, 139-150. http://dx.doi.org/10.1016/j.catena.2017.05.025
7. Belaout, F., Mekerta, B., Zentar, R., Chabani, A., Abdelkrimi, A., Kalloum, S., 2021. Modeling of erosion in the Wadi Guir watershed (South-West Algeria) by the application of Geographic Information System (GIS). International Journal of Forest. Soil and Erosion. 11(1).
8. Benchettouh, A., Kouri, L., Jebari, S., 2017. Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest. Algeria). Arabian Journal of Geosciences. 10(4). 79. http://dx.doi.org/10.5772/intechopen.96190
9. Biswas, S. S., Pani, P., 2015. Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and Environment, 1(4), 1-13. DOI 10.1007/s40808-015-0040-3
10. Bollinne, A., Laurant, A., 1983. La prévision de l’érosion en Europe Atlantique : le cas de la zone limoneuse de Belgique. Pédologie, XXXIII, 2, 117-136pp.
11. Bollinne, A., Rosseau P., 1978. Erodibilité des sols de moyenne et haute Belgique. Utilisation d’une méthode de calcul du facteur K de l’équation universelle de perte en terre. Bull. Soc. Géogr. de Liège, 14,4 : 127-140pp.
12. Bouguerra, H., Bouanani, A., Khanchoul, K., Derdous, O., Tachi, S. E., 2017. Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. Journal of water and land development. 32(1). 13-23pp.
13. Boukheir, R., Cerdo, O., Abdallah, C., 2006. Regional soil erosion risk mapping in Lebanon. The Journal of Geomorphology. Vol. 82. Iss. 3 p. 347–359.
14. Coulibaly, L. K., Guan, Q., Assoma, T. V., Fan, X., Coulibaly, N., 2021. Coupling linear spectral unmixing and RUSLE2 to model soil erosion in the Boubo coastal watershed, Côte d'Ivoire. Ecological Indicators, 130, 108092. https://doi.org/10.1016/j.ecolind.2021.108092
15. Dao, A., Koffi, E. S., Noufé, D. D., Kamagaté, B., Goné, L. D., Séguis, L., Perrin, J. L., 2021. Soil loss vulnerability: the case study of Aghien lagoon watershed outskirts Abidjan city (Côte d'Ivoire). Proceedings of the International Association of Hydrological Sciences, 384, 121-126. https://doi.org/10.5194/piahs-384-121-2021
16. Das, B., Bordoloi, R., Thungon, L. T., Paul, A., Pandey, K. P., Mishra, M., Tripathi O. P., 2020. An integrated approach of GIS. RUSLE and AHP to model soil erosion in West Kameng watershed. Arunachal Pradesh. J. Earth Syst. Sci. (2020) 129:94. https://doi.org/10.1007/s12040-020-1356-6
17. Dawa, D., Arjune, V., 2021. Identifying Potential Erosion-Prone Areas in the Indian Himalayan Region Using the Revised Universal Soil Loss Equation (RUSLE). Asian Journal of Water, Environment and Pollution, 18(1), 15-23. DOI : 10.3233/AJW210003
18. Déguy, J. P. A., N’Go, A. Y., Kouassi, H. K., Soro, E. G., Goula, A. T. B., 2018. Contribution of a Geographical Information System to the Study of Soil Loss Dynamics in the Lobo Catchment (Côte d’Ivoire). Journal of Geoscience and Environment Protection. 6(09). 183. doi: 10.4236/gep.2018.69014.
19. Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of soil and water conservation, 51(5), 427-433.
20. Eblin, S. G., Yao, A. B., Anoh, K. A., Soro, N., 2017. Cartographie de la vulnérabilité multifactorielle aux risques d’érosion hydrique des sols de la région d’Adiaké. sud-est Côtier de la côte d’ivoire. Revue Internationale des Sciences et Technologie. 30. 197-216.
21. EL Garouani, A., Chen, H., Lewis, L., Tribak, A., Abharour, M., 2008. Cartographie de l’utilisation du sol et de l’érosion nette à partir d’images satellitaires et du SIG IDRISI au nord-est du Maroc. Télédétection. Editions scientifiques GB. 8 (3), 193-201 pp.
22. Ganasri, B. P., Ramesh, H., 2016. Assessment of Soil Erosion by RUSLE Model Using Rmote Sensing and GIS – A Case Study of Nethravathi. Basin Geoscience Frontiers, 7:953-961. https://doi.org/10.1016/j.gsf.2015.10.007
23. Kayet, N., Pathak, K., Chakrabarty, A., Sahoo, S., 2018. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6(1), 31-42. https://doi.org/10.1016/j.iswcr.2017.11.002
24. Karydas, C. G., Sekuloska, T., Silleos, G. N. (2009). Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environmental Monitoring and Assessment, 149, 19-28. https://doi.org/10.1007/s10661-008-0179-8
25. Khanchoula, K., Selmi, K., Benmarce, K., 2020. Assessment of soil erosion by RUSLE model in the Mellegue watershed, northeast of Algeria. Environment and Ecosystem Science (EES), 4(1), 15-22. http://doi.org/10.26480/ees.01.2020.15.22
26. Khemiri, K., Jebari, S., 2021. Évaluation de l’érosion hydrique dans des bassins versants de la zone semi-aride tunisienne avec les modèles RUSLE et MUSLE couplés à un Système d’information géographique. Cah. Agric. 30: 7. https://doi.org/10.1051/cagri/2020048
27. Kilic, O. M., 2021. Effects of land use and land cover changes on soil erosion in semi-arid regions of Turkey; a case study in Almus Lake watershed. Carpathian Journal of Earth and Environmental Sciences, 16(1), 129-138. DOI: 10.26471/cjees/2021/016/161
28. Kinnell, P. I. A., 2016. A review of the design and operation of runoff and soil loss plots. Catena 145 (2016) 257-265. 10.1016/j.catena.2016.06.013. http://dx.doi.org/10.1016/j.catena.2016.06.013
29. Koffi, E. S., Koffi, K. J. T., Perrin, J-L., Séguis, L., Guilliod, M., Goné, D. L., Kamagaté, B., 2019. Hydrological and water quality assessment of the Aghien Lagoon hydrosystem (Abidjan. Côte d’Ivoire). Hydrological Sciences Journal, 64:15. 1893-1908. https://doi.org/10.1080/02626667.2019.1672875
30. Koffi, K. J. P., N’Go, Y. A., Yéo K. M., Koné. D., Savané I., 2014. Détermination des périmètres de protection de la lagune Aghien par le calcul du temps de transfert de l’eau jusqu’ à la lagune. Larhyss Journal 2 19. 19–3.
31. Koua, J. J. T., Anoh, A. K., Soro, D. T., Kouamé, J. K., Jourda, R. J. P., 2019. Evaluation of Agricultural Practices Scenarios for Reducing Erosion in Buyo Lake Catchment (Sassandra; Côte d’Ivoire) by Use of GIS. Journal of Geoscience and Environment Protection. 7(7). 154-171. https://doi.org/10.4236/gep.2019.77011
32. Kouadio, B. H., Kouamé, K. F., Saley, B. M., Biémi, J., 2007. Traoré Ibrahima1Insécurité climatique et géorisques en Côte d’Ivoire : étude du risque d’érosion hydrique des sols dans la région semi-montagneuse de Man (Ouest de la Côte d’Ivoire). Sécheresse vol. 18. n° 1 : 29-37.
33. Kouadio, Z. A., 2018. Spatial Analysis of Erosive Runoff in the Mé Watershed (Côte d’Ivoire). Journal of Water Science and Environment Technologies. 3(02). 376-382.
34. Kouassi, K. H., Koua, T. J. J., Zro, B. G. F., N'Go, Y. A., 2020. Contribution of a Geographical Information System to the study of soil erosion by water in the watershed of the hydro-agricultural dam of Babadou (Côte d'Ivoire). International Journal of Innovation and Applied Studies. 28(2). 458-467.
35. Koukougnon, W. G., Brou, K. M., Silué, Y., Della André, A. L. L. A., 2021. Korhogo à l’épreuve de l’érosion et ses conséquences (nord-Côte d’Ivoire). International Journal of Humanities and Cultural Studies (IJHCS) ISSN 2356-5926. 8(2). 37-50.
36. Markhi, A., Laftouhi ,N-E., Soulaimani, A. Fniguire, F., 2015. Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrée dans un SIG. Application dans le bassin versant n'fis dans le haut atlas de Marrakech (Maroc). European Scientific Journal, edition vol.11. No.29 ISSN: 1857-7881pp.
37. Maurya, S., Srivastava, P. K., Yaduvanshi, A., Anand, A., Petropoulos, G. P., Zhuo, L., Mall R. K., 2021. Soil erosion in future scenario using CMIP5 models and earth observation datasets. Journal of Hydrology, 594, 125851. https://doi.org/10.1016/j.jhydrol.2020.125851
38. Mazouzi, K., El-Hmaidi, A., Bouabid, R., El-Faleh, E-M., 2021. Quantification de l’érosion hydrique par la méthode RUSLE au niveau du bassin versant de l’Oued Mikkès en amont du barrage Sidi Chahed (région de Meknès. Maroc). European Scientific Journal, ESJ. 17(14). 256. https://doi.org/10.19044/esj.2021.v17n14p256
39. Meliho, M., Khattabi, A., Mhammdi, N., 2020. Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: a case of Tensift watershed in Morocco. Environmental Earth Sciences, 79(10), 1-19. https://doi.org/10.1007/s12665-020-08955-y
40. Meliho, M., Khattabi, A., Mhammdi, N., Zhang, H., 2016. Cartographie des risques de l’erosion hydrique par l’Equation Universelle Revisee des Pertes en Sols, la teledetection et les SIG dans le bassin versant de l’ourika (Haut Atlas, Maroc), Eur. Scient. J., 12, 32, https://doi.org/10.19044/esj.2016.v12n32p277
41. N’Dri, W. K. C., Pistre, S., Jourda ,J. P., Kouamé, K. J., 2021. Application of a Deterministic Distributed Hydrological Model for Estimating Impact of Climate Change on Water Resources in Côte d’Ivoire Using RCP 4.5 and RCP 8.5 Scenarios: Case of the Aghien Lagoon. Dr. Mustafa Turkmen; Dr. Kwong Fai Andrew Lo. International Research in Environment, Geography and Earth Science Vol. 9, 9, Book Publisher International (a part of SCIENCEDOMAIN International), pp.129 - 153, 2021, 978-93-91215-91-0. ff10.9734/bpi/ireges/v9/5512dff. ffhal-03254861f
42. Nana, P. P., 2018. Du groupe à l’individu : dynamique de la gestion foncière en pays gouin (sud-ouest du Burkina Faso), Belgeo URL http://journals,openedition,org/belgeo/21653 6080; https://doi.org/10.4000/belgeo.26080
43. N'Dri, B. É., Niamké, K. H., Koudou, A., N'Go, Y. A., 2017. Cartographie des formes d'érosion hydrique dans la commune urbaine d'attécoubé (Abidjan. Côte d’Ivoire) /mapping of water erosion forms in the urban district of Attecoube (Abidjan. Côte d'Ivoire). International Journal of Innovation and Applied Studies. 19(4). 960.
44. Nut, N., Mihara, M., Jeong, J., Ngo, B., Sigua, G., Prasad, P. V., Reyes, M. R., 2021. Land use and land cover changes and its impact on soil erosion in Stung Sangkae catchment of Cambodia. Sustainability, 13(16), 9276. https://doi.org/10.3390/su13169276
45. Onyando, J O., Kisoyan, P., Chemelil, M. C., 2005. Estimation of potential soil erosion for river Perkerra catchment in Kenya; Water Resour. Manag. 19(2) 133–143. https://doi.org/10.1007/s11269-005-2706-5
46. Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L., 2015a. Estimating the soil erosion cover-management factor at the European scale. Land use policy, 48, 38-50. http://dx.doi.org/10.1016/j.landusepol.2015.05.021
47. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Alewell, C., 2015b. The new assessment of soil loss by water erosion in Europe. Environmental science and policy, 54, 438-447. https://doi.org/10.1016/j.envsci.2015.08.012
48. Payet, E., Dumas, P., Pennober, G., 2012. Modélisation de l’érosion hydrique des sols sur un bassin versant du sud-ouest de Madagascar, le Fiherenana. VertigO: la revue électronique en sciences de l’environnement, 11(3). https://id.erudit.org/iderudit/1015047ar
49. Piyathilake, I. D. U. H., Sumudumali, R. G. I., Udayakumara, E. P. N., Ranaweera, L. V., Jayawardana, J. M. C. K., Gunatilake, S. K., 2021. Modeling predictive assessment of soil erosion related hazards at the Uva province in Sri Lanka. Modeling Earth Systems and Environment, 7(3), 1947-1962. . https://doi.org/10.1007/s40808-020-00944-1
50. Renard, K. G., Freimund, J. R., 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of hydrology, 157(1-4), 287-306.
51. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., Yoder, D. C., 1996. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook, 703, 25-28.
52. Roose, E. J., Lelong, F., 1976. Les facteurs de l'érosion hydrique en Afrique Tropicale. Études sur petites parcelles expérimentales de sol. Revue de géographie physique et de géologie dynamique. Vol. 18. Iss. 4 p. 365–374.
53. Roose, E. J., 1977. Use of the Universal Soil Loss Equation to Predict Erosion in West Africa. In Soil erosion: Prediction and control. Soil Conservation Society of America, Special Publication no. 21. Ankeny, Iowa.
54. Rougerie, G., 1958. Modalité du ruissellement sous forêt dense de Côte d’Ivoire. CR Acad Sci Paris ; 246 : 290-2.
55. Rougerie, G., 1960. Le façonnement actuel des modelés en Côte d’Ivoire forestière. Mémoire IFAN 58. Dakar : Institut Fondamental d’Afrique Noire (IFAN).
56. Sbai, A., Mouadili, O., Hlal, M., Benrbia, K., Zahra Mazari, F., Bouabdallah, M., Saidi, A., 2021. Water Erosion in the Moulouya Watershed and its Impact on Dams' Siltation (Eastern Morocco). Proceedings of the International Association of Hydrological Sciences, 384, 127-131.
57. Songu, G. A., Abu, R. D., Temwa, N. M., Yiye S. T., Wahab, S., Mohammed, B. G., 2021. Analysis of Soil Erodibility Factor for Hydrologic Processes in Kereke Watershed, North Central Nigeria. Journal of Applied Sciences and Environmental Management, 25(3), 425-432. https://dx.doi.org/10.4314/jasem.v25i3.18
58. Stone, R. P., Hilborn, D., 2000. Universal Soil Loss Equation-Factsheet. http://www.omafra.gov.on.ca/english/engineer/facts/00-001.htm
59. Swarnkar, S., Malini, A., Tripathi, S., Sinha, R., 2018. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India. Hydrology and Earth System Sciences, 22(4), 2471-2485. https://doi.org/10.5194/hess-22-2471-2018
60. Tian, Y. C., Zhou, Y. M., Wu, B. F., & Zhou, W. F. (2009). Risk assessment of water soil erosion in upper basin of Miyun Reservoir, Beijing, China. Environmental Geology, 57, 937-942. https://doi.org/10.1007/s00254-008-1376-z
61. Toumi, S., Meddi, M., Mahé, G., Brou, Y-T., 2013. Cartographie de l'érosion dans le bassin versant de l'Oued Mina en Algérie par télédétection et SIG. Hydrological Sciences Journal, l58. 01- 17. https://doi.org/10.1080/02626667.2013.824088.
62. Traoré, A., Soro, G., Kouadio, E. K., Bamba, B. S., Oga, M. S., Soro, N., Biémi, J., 2012. Evaluation des paramètres physiques. chimiques et bactériologiques des eaux d’une lagune tropicale en période d’étiage : la lagune Aghien (Côte d’Ivoire). International Journal of Biological and Chemical Sciences. 6(6). 7048-7058. http://dx.doi.org/10.4314/ijbcs.v6i6.40
63. Trimble., 2010. eCognition® Developer 8.64.0 Reference Book. (Available at: http://www.definiens.com/ . Access on may 11, 2015)
64. Tsegaye, L., Bharti, R., 2021. Soil erosion and sediment yield assessment using RUSLE and GIS-based approach in Anjeb watershed, Northwest Ethiopia. SN Applied Sciences, 3(5), 1-19. https://doi.org/10.1007/s42452-021-04564-x
65. Vrieling, A., 2005. Satellite remote sensing for water erosion assessment. a review. CATENA. Vol. 65. Iss. 1 p. 2–18
66. Wachal, D. J., Banks, K. E., Hudak, P. F., Harmel, R. D., 2009. Modeling erosion and sediment control practices with RUSLE 2.0 : A management approach for natural gas well sites in Denton County. TX. USA. Environmental geology. 56(8). 1615-1627pp. https://doi.org/10.1007/s00254-008-1259-3
67. Wischmeier, V. H., Smith, D. D., 1978. Predicting rainfall erosion losses- a guide to conservation planning. United States Department of Agriculture in cooperation with Purdue Agricultural Experiment Station. United States Department of Agriculture. Washington. Agriculture Handbook No. 282.
68. Zhou, P., Luukkanen, O., Tokola, T., Nieminen, J., 2008. EAect of vegetation cover on soil erosion in a mountainous watershed; Catena 75(3) 319–325pp. https://doi.org/10.1016/j.catena.2008.07.010
Published
2024-07-21
How to Cite
Koffi, S. E., Dao, A., Noufe, D. D., Ouedraogo, M., Yeo, N. B., Seguis, L., Perrin, J. L., Kamagate, B., & Gone, L. D. (2024). Characterization of the vegetation cover and water erosion dynamics in the Aghien lagoon catchment. European Scientific Journal, ESJ, 31, 346. Retrieved from https://eujournal.org/index.php/esj/article/view/18349
Section
ESI Preprints