Bias correction of CORDEX-Africa regional climate model simulations for trend analysis in northeastern Lake Chad: Comparison of three bias correction methods
Abstract
In order to better adapt to the consequences of climate change, regional climate models (RCMs) have been set up for simulations. However, these simulations are often subject to biases, making it difficult to use them directly in studies of the impact of climate change. It is therefore necessary to use bias correction methods to reduce discrepancies between observed data and the data simulated by RCMs. The aim of this study is to analyse the results of three bias correction techniques (scaling, EQM and GQM) applied to rainfall data and mean minimum and maximum temperatures from CORDEX-Africa Regional Climate Models (RCMs), specifically in the north-eastern region of Lake Chad. Various statistical measures such as Pbiais, RMSE, R2 and EAM were used to assess the performance of each bias correction method in this study. In addition, the adjusted Mann-Kendall test and the Sen slope estimator were used to examine trends and their magnitude over the recent (1975-2004) and future (2021-2050) periods with a significance level of 5%. Overall, based on the statistical measures evaluating the effectiveness of the bias correction techniques, this study shows that all the methods tested were able to reduce the biases of the RCM outputs satisfactorily. In particular, the linear scaling approach proved to be more effective in correcting biases than the EQM and GQM methods. Therefore, an analysis of future trends in mean annual precipitation and temperature (minimum and maximum) was carried out for the RCP4.5 and RCP8.5 scenarios using the linear scaling method to correct for data biases. An increase in precipitation and temperature was observed in the study area over the recent period. The results of multi-model averaging of regional climate change for the RCP4.5 and RCP8.5 scenarios indicate a significant increase in mean annual temperatures (minimum and maximum) in the future. As far as annual precipitation is concerned, only an increase is forecast under the RCP4.5 scenarios. Under the RCP8.5 scenarios, a trend towards stable precipitation is predominant, with the exception of the south of the zone, where an increase has been observed. In the light of these results, it is clear that the impact of climate change will intensify in the region studied in the future.
Downloads
Metrics
References
2. Agbo, E. P., Ekpo, C. M., & Edet, C. O. (2021). Analysis of the effects of meteorological parameters on radio refractivity, equivalent potential temperature and field strength via Mann-Kendall test. Theoretical and Applied Climatology, 143(3‑4), 1437‑1456. https://doi.org/10.1007/s00704-020-03464-1
3. Ahmad, I., Tang, D., Wang, T., Wang, M., & Wagan, B. (2015). Precipitation Trends over Time Using Mann-Kendall and Spearman’s rho Tests in Swat River Basin, Pakistan. Advances in Meteorology, 2015, 1‑15. https://doi.org/10.1155/2015/431860
4. Akinsanola, A. A., Ogunjobi, K. O., Gbode, I. E., & Ajayi, V. O. (2015). Assessing the Capabilities of Three Regional Climate Models over CORDEX Africa in Simulating West African Summer Monsoon Precipitation. Advances in Meteorology, 2015, 1‑13. https://doi.org/10.1155/2015/935431
5. Bayazit, M., & Önöz, B. (2007). To prewhiten or not to prewhiten in trend analysis? Hydrological Sciences Journal, 52(4), 611‑624. https://doi.org/10.1623/hysj.52.4.611
6. Boé, J., Terray, L., Habets, F., & Martin, E. (2007). Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies. International Journal of Climatology, 27(12), 1643‑1655. https://doi.org/10.1002/joc.1602
7. Byun, K., & Hamlet, A. F. (2019). An improved empirical quantile mapping procedure for bias correction of climate change projections. In AGU Fall Meeting Abstracts (Vol. 2019, pp. GC31L-1369)., GC31L-1369).
8. Caya, D., Laprise, R., Giguière, M., Blanchet, J. P., Stocks, B. J., Boergeron, G. J., Boer, G. J., & Mcfarlane, N. A. (1995). Description of the Canadian regional climate model. Water, Air and Soil Pollution, 82, 477‑482.
9. Changements climatiques 2014 : Rapport de synthèse : Contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat (avec Giec). (2014). GIEC.
10. Christensen, B., Martin, D., & Jens, H. C. (2007). The HIRHAM Regional Climate Model. Version 5 (beta) (Technical Report 06‑17). Danish Climate Centre, DMI. http://www.dmi.dk/dmi/tr06-17
11. Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H., Rockel, B., Jacob, D., Kjellström, E., De Castro, M., & Van Den Hurk, B. (2007). An intercomparison of regional climate simulations for Europe : Assessing uncertainties in model projections. Climatic Change, 81(S1), 53‑70. https://doi.org/10.1007/s10584-006-9228-x
12. Ezéchiel, O., Eric, A. A., Josué, Z. E., Eliézer, B. I., & Amédée, C. (2016). Comparative study of seven bias correction methods applied to three Regional Climate Models in Mekrou catchment (Benin, West Africa). International Journal of Current Engineering and Technology, 6(5), 1831‑1840.
13. Fang, G. H., Yang, J., Chen, Y. N., & Zammit, C. (2015). Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547‑2559. https://doi.org/10.5194/hess-19-2547-2015
14. Fotso‐Nguemo, T. C., Chamani, R., Yepdo, Z. D., Sonkoué, D., Matsaguim, C. N., Vondou, D. A., & Tanessong, R. S. (2018). Projected trends of extreme rainfall events from CMIP5 models over Central Africa. Atmospheric Science Letters, 19(2), e803. https://doi.org/10.1002/asl.803
15. Fotso-Nguemo, T. C., Chamani, R., Yepdo, Z. D., Sonkoué, D., Matsaguim, C. N., Vondou, D. A., & Tanessong, R. S. (2018). Projected trends of extreme rainfall events from CMIP5 models over Central Africa. Atmospheric Science Letters, 19(2), e803. https://doi.org/c
16. Fotso-Nguemo, T. C., Vondou, D. A., Pokam, W. M., Djomou, Z. Y., Diallo, I., Haensler, A., Tchotchou, L. A. D., Kamsu-Tamo, P. H., Gaye, A. T., & Tchawoua, C. (2017). On the added value of the regional climate model REMO in the assessment of climate change signal over Central Africa. Climate Dynamics, 49(11‑12), 3813‑3838. https://doi.org/10.1007/s00382-017-3547-7
17. Fowler, H. J., Kilsby, C. G., & Stunell, J. (2007). Modelling the impacts of projected future climate change on water resources in north-west England. Hydrology and Earth System Sciences, 11(3), 1115‑1126. https://doi.org/10.5194/hess-11-1115-2007
18. GIZ. (2015). Adaptation to Climate Change in the Lake Chad Basin climate change study (p. 38).
19. Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172‑182. https://doi.org/10.1016/j.gloplacha.2012.10.014
20. Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371‑385. https://doi.org/10.1007/s10584-013-0853-x
21. Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical Note : Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383‑3390. https://doi.org/10.5194/hess-16-3383-2012
22. Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., & Piani, C. (2011). Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three GCMs and Two Hydrology Models. Journal of Hydrometeorology, 12(4), 556‑578. https://doi.org/10.1175/2011JHM1336.1
23. Hamed, K. H., & Rao, R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1‑4), 182‑196. https://doi.org/10.1016/S0022-1694(97)00125-X
24. Hamed, M. M., Nashwan, M. S., & Shahid, S. (2021). Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. International Journal of Climatology, 41(11), 5431‑5446. https://doi.org/10.1002/joc.7286
25. Hanchane, M., Kessabi, R., Krakauer, N. Y., Sadiki, A., El Kassioui, J., & Aboubi, I. (2023). Performance Evaluation of TerraClimate Monthly Rainfall Data after Bias Correction in the Fes-Meknes Region (Morocco). Climate, 11(6), 120. https://doi.org/10.3390/cli11060120
26. Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. https://doi.org/10.1038/s41597-020-0453-3
27. Hartley, A., Jones, R., & Janes, T. (2015). Fiche d’information sur le changement climatique et les services écosystémiques : Tchad [Technical report.]. UNEP-WCMC.
28. Hawkins, E., Osborne, T. M., Ho, C. K., & Challinor, A. J. (2013). Calibration and bias correction of climate projections for crop modelling : An idealised case study over Europe. Agricultural and Forest Meteorology, 170, 19‑31. https://doi.org/10.1016/j.agrformet.2012.04.007
29. Holthuijzen, M., Beckage, B., Clemins, P. J., Higdon, D., & Winter, J. M. (2022). Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method : Advantages of a linear correction for extremes. Theoretical and Applied Climatology, 149(1‑2), 863‑882. https://doi.org/10.1007/s00704-022-04035-2
30. Holthuijzen, M. F., Brian, B., Patrick, J., Clemins, Dave, H., & Jonathan, M. (2021). Construction de produits climatiques à haute résolution corrigés des biais : Comparaison des méthodes. L ., 60. https://doi.org/10.1175/JAMC-D-20-0252.1
31. Ibrahim, B. (2012). Caractérisation des saisons de pluies au Burkina Faso dans un contexte de changement climatique et évaluation des impacts hydrologiques sur le bassin du Nakanbé. Université Pierre Et Marie Curie.
32. IPCC. (2007). Climate Change 2007 : The Physical Science Basis (p. 19). https://www.slvwd.com/sites/g/files/vyhlif1176/f/uploads/item_10b_4.pdf
33. Kaboré, B. P. E., Nikiema, M., Ibrahim, B., & Helmschrot, J. (2015). Merging historical data records with MPI-ESM-LR, CanESM2, AFR MPI and AFR 44 scenarios to assess long-term climate trends for the Massili Basin in central Burkina Faso. International Journal of Current Engineering and Technology, 5(3), 1846‑1852.
34. Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. (2013). Bias correction of daily precipitation simulated by a regional climate model : A comparison of methods. International Journal of Climatology, 33(6), 1367‑1381. https://doi.org/10.1002/joc.3518
35. Lenderink, G., Buishand, A., & Van Deursen, W. (2007). Estimates of future discharges of the river Rhine using two scenario methodologies : Direct versus delta approach. Hydrology and Earth System Sciences, 11(3), 1145‑1159. https://doi.org/10.5194/hess-11-1145-2007
36. Li, H., Sheffield, J., & Wood, E. F. (2010). Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres, 115(D10), 2009JD012882. https://doi.org/10.1029/2009JD012882
37. Mahmood, R., Jia, S., & Zhu, W. (2019). Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Scientific Reports, 9(1), 6317. https://doi.org/10.1038/s41598-019-42811-9
38. Maraun, D. (2013a). Bias Correction, Quantile Mapping, and Downscaling : Revisiting the Inflation Issue. Journal of Climate, 26(6), 2137‑2143. https://doi.org/10.1175/JCLI-D-12-00821.1
39. Maraun, D. (2013b). Bias Correction, Quantile Mapping, and Downscaling : Revisiting the Inflation Issue. Journal of Climate, 26(6), 2137‑2143. https://doi.org/10.1175/JCLI-D-12-00821.1
40. Mavromatis, T., & Stathis, D. (2011). Response of the water balance in Greece to temperature and precipitation trends. Theoretical and Applied Climatology, 104(1‑2), 13‑24. https://doi.org/10.1007/s00704-010-0320-9
41. Mbienda, K. A. J., Guenang, G. M., Kaissassou, S., Tanessong, R. S., Choumbou, P. C., & Giorgi, F. (2022). Enhancement of RegCM4.7-CLM precipitation and temperature by improved bias correction methods over Central Africa. Meteorological Applications, 30, 4854‑2995. https://doi.org/10.1002/met.2116
42. Meijgaard, van E., van Ulft, B., van de Berg, W. J., Bosveld, F. C., Van den Hurk, B. J. J. M., Lenderink, G., & Siebesma, A. P. (2008). The KNMI regional atmospheric climate model RACMO, version 2. (Technical Report 302; p. 50). )Institute for Marine and Atmospheric Research, Utrecht University. https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR302.pdf
43. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885‑900. https://doi.org/10.13031/2013.23153
44. Neha, K. (2012). Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. http://repository.upenn.edu/mes_capstones/47
45. Nguyen, H., Mehrotra, R., & Sharma, A. (2017). Can the variability in precipitation simulations across GCMs be reduced through sensible bias correction? Climate Dynamics, 49(9‑10), 3257‑3275. https://doi.org/10.1007/s00382-016-3510-z
46. Nkiaka, E., Nawaz, R., & Lovett, J. C. (2018a). Assessing the reliability and uncertainties of projected changes in precipitation and temperature in Coupled Model Intercomparison Project phase 5 models over the Lake Chad basin. International Journal of Climatology, 38(14), 5136‑5152. https://doi.org/10.1002/joc.5717
47. Nkiaka, E., Nawaz, R., & Lovett, J. C. (2018b). Assessing the reliability and uncertainties of projected changes in precipitation and temperature in Coupled Model Intercomparison Project phase 5 models over the Lake Chad basin. International Journal of Climatology, 38(14), 5136‑5152. https://doi.org/10.1002/joc.5717
48. N’TCHA, M. Y. (2018). Evaluation de l’impact des changements climatiques et d’utilisation des terres sur les ressources en eau du bassin de l’oueme a beterou a l’horizon 2050. Docteur de l’Institut National Polytechnique Felix Fouphouët-Boigny.
49. N’Tcha M’Po, Y. (2016). Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé Basin, Benin. Hydrology, 4(6), 58. https://doi.org/10.11648/j.hyd.20160406.11
50. N’Tcha M’Po, Y. (2018). Evaluation de l’impact des changements climatiques et d’utilisation des terres sur les ressources en eau du bassin de l’Oueme a Beterou a l’horizon 2050. Institut National Polytechnique Felix Houphouët-Boigny.
51. Pastén-Zapata, E., Jones, J. M., Moggridge, H., & Widmann, M. (2020). Evaluation of the performance of Euro-CORDEX Regional Climate Models for assessing hydrological climate change impacts in Great Britain : A comparison of different spatial resolutions and quantile mapping bias correction methods. Journal of Hydrology, 584, 124653. https://doi.org/10.1016/j.jhydrol.2020.124653
52. Phuong, D. N. D., Duong, T. Q., Liem, N. D., Tram, V. N. Q., Cuong, D. K., & Loi, N. K. (2020). Projections of Future Climate Change in the Vu Gia Thu Bon River Basin, Vietnam by Using Statistical DownScaling Model (SDSM). Water, 12(3), 755. https://doi.org/10.3390/w12030755
53. Piani, C., Haerter, J. O., & Coppola, E. (2010a). Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 99(1‑2), 187‑192. https://doi.org/10.1007/s00704-009-0134-9
54. Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., & Haerter, J. O. (2010b). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395(3‑4), 199‑215. https://doi.org/10.1016/j.jhydrol.2010.10.024
55. Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K., & Jarvis, A. (2013). Implications of regional improvement in global climate models for agricultural impact research. Environmental Research Letters, 8(2), 024018. https://doi.org/10.1088/1748-9326/8/2/024018
56. Rowell, D. P. (2013). Simulating SST Teleconnections to Africa : What is the State of the Art? Journal of Climate, 26(15), 5397‑5418. https://doi.org/10.1175/JCLI-D-12-00761.1
57. Rummukainen, M. (2016). Added value in regional climate modeling. WIREs Climate Change, 7(1), 145‑159. https://doi.org/10.1002/wcc.378
58. Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., & Wyser, K. (2011). The Rossby Centre Regional Climate model RCA3 : Model description and performance. Tellus A: Dynamic Meteorology and Oceanography, 63(1), 4. https://doi.org/10.1111/j.1600-0870.2010.00478.x
59. Siam, M. S., Demory, M.-E., & Eltahir, E. A. B. (2013). Hydrological Cycles over the Congo and Upper Blue Nile Basins : Evaluation of General Circulation Model Simulations and Reanalysis Products. Journal of Climate, 26(22), 8881‑8894. https://doi.org/10.1175/JCLI-D-12-00404.1
60. Sinha, T., & Cherkauer, K. A. (2008). Time Series Analysis of Soil Freeze and Thaw Processes in Indiana. Journal of Hydrometeorology, 9(5), 936‑950. https://doi.org/10.1175/2008JHM934.1
61. Song, C.-Y., Kim, S.-H., & Ahn, J.-B. (2021). Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping. Atmosphere, 31(5), 637‑656. https://doi.org/10.14191/ATMOS.2021.31.5.637
62. Souleymane, K., Barthelemy, B. S., Ismaïla, O., Seydou, D., & Bamory, K. (2019). Variabilités et Tendances des Paramètres Hydroclimatiques dans le Bassin Versant de la Rivière Banco au Sud de la Côte d’Ivoire. European Scientific Journal ESJ, 15(27). https://doi.org/10.19044/esj.2019.v15n27p282
63. Taguela, T. N., Vondou, D. A., Moufouma‐Okia, W., Fotso‐Nguemo, T. C., Pokam, W. M., Tanessong, R. S., Yepdo, Z. D., Haensler, A., Longandjo, G. N., Bell, J. P., Takong, R. R., & Djiotang Tchotchou, L. A. (2020). CORDEX Multi‐RCM Hindcast Over Central Africa : Evaluation Within Observational Uncertainty. Journal of Geophysical Research: Atmospheres, 125(5), e2019JD031607. https://doi.org/10.1029/2019JD031607
64. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485‑498. https://doi.org/10.1175/BAMS-D-11-00094.1
65. Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies : Review and evaluation of different methods. Journal of Hydrology, 456‑457, 12‑29. https://doi.org/10.1016/j.jhydrol.2012.05.052
66. Themeßl, M. J., Gobiet, A., & Heinrich, G. (2012). Empirical-statistical downscaling and error correction of regional climate models and their impact on the climate change signal. Climatic Change, 112(2), 449‑468. https://doi.org/10.1007/s10584-011-0224-4
67. Vlček, O., & Huth, R. (2009). Is daily precipitation Gamma-distributed? Atmospheric Research, 93(4), 759‑766. https://doi.org/10.1016/j.atmosres.2009.03.005
68. Wilcke, R. A. I., Mendlik, T., & Gobiet, A. (2013). Multi-variable error correction of regional climate models. Climatic Change, 120(4), 871‑887. https://doi.org/10.1007/s10584-013-0845-x
69. Yazid, M., & Humphries, U. (2015). Regional Observed Trends in Daily Rainfall Indices of Extremes over the Indochina Peninsula from 1960 to 2007. Climate, 3(1), 168‑192. https://doi.org/10.3390/cli3010168
Copyright (c) 2024 Mardochee Dingamadji, Julien Adounkpe, Hamit Abderamane, Mahamat Nour Abdallah
This work is licensed under a Creative Commons Attribution 4.0 International License.