Genetic variability and advance, heritability, Path coefficient analysis and inter-characters relationships in colocynth (Citrullus colocynthis [L.] Schrad.) collected in Southeastern villages of Benin Republic

  • A. Seraphin Zanklan Département de Biologie Végétale, Faculté des Sciences et Techniques, Université d´Abomey-Calavi, Cotonou, Bénin
Keywords: Citrullus colocynthis, Genetic advance (GA, GAM), Genetic variability, Genotypic coefficients of variation (GCV), Heritability, Phenotypic coefficients of variation (PCV), Path coefficient analysis

Abstract

Genetic improvement of crops for important traits requires reliable estimates of genetic variability. heritability and genetic advance of intending parent materials to identify traits useful in planning an efficient breeding program through selection. Effectiveness of genetic improvement of a crop depends on the variability in the agro-morphological traits of individual genotype. Understanding the variation that exists will allow the breeder to determine the breeding strategies to adopt in his breeding program. The objectives of the study were to estimate the magnitude of genetic variability and advance, heritability, inter-characters relationships by simple correlations and path coefficient analysis for yield contributing traits of 40 local colocynth genotypes cultivated in Southeastern Benin. The experiment was carried out in a randomized complete block design with three replications in three locations and during three years. 34 morpho-agronomic traits were observed in each genotype. Analysis of variance revealed that effects of genotype, genotype by year or location and genotype by year by location interactions were significant (p ≤ 0.01 or 0.05) for all the characters. PCV values were relatively greater than GCV for all traits. High magnitude of phenotypic and genotypic coefficient of variations as well as high heritability along with high genetic advance were recorded particularly for qualitative traits. Correlation and path coefficient analysis were performed on all 34 traits. It was found that all of the yield components except time to emergence, time to tailspins, leaf limb width, fruit number per plant, fruit width, seed length, seed tegument percentage and stem pubescence texture had significant and positive correlations with yield attributes represented by thousand-seeds weight (TSW) and seed number per plant (SNP). Path coefficient analysis indicated that all the characters (except leaf pubescence texture, stem pubescence texture, fruit design produced by secondary color and male flower size)  had positive direct effect on TSW and partly SNP. Results suggested that most of the 34 quantitative and qualitative traits studied could be effectively used as selection criteria in the breeding program of Citrullus colocynthis varieties with high yielding.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Achigan-Dako E.G., Avohou E.S., Linsoussi C.A., Ahanchédé A., Vodouhè R. and Blattner F.R. (2015). Phenetic characterization of Citrullus spp. (Cucurbitaceae) and differentiation of egusi-type (C. mucosospermus). Genetic Resource and Crop Evolution 62 : 1159-1179, DOI:10.1007/s10722-015-0220-z.
2. Achu, M.B., Fokou, E., Tchigang, C., Fotso, M. and Tchouanguep, F.M., (2005). Nutritive value of some Cucurbitaceae oilseeds from different regions in Cameroon. Afr. J. Biotechnol. 4, 1329–1334.
3. Adekoya, M.A., Ariyo, O. J., Kehinde, O.B. and Adegbite, A.E. (2014). Correlation and Path Analyses of Seed Yield in Okra (Abelmoschus esculentus (L.) Moench) Grown Under Different Cropping Seasons. Pertanika J. Trop. Agric. Sci. 37 (1) : 39 – 49.
4. Akbar M., Shakoor M.S., Hussain A. and Sarwar M. (2008). Evaluation of maize 3-way crosses through genetic variability, broad sense heritability, characters association and path analysis. J. Agric. Res., 46(1): 39-45.
5. Akinyele B.O. and Osekita O.S. (2006). Correlation and path coefficient analyses of seed yield attributes in okra (Abelmoschus esculentus (L.) Moench). African Journal of Biotechnology, 5(14), 1330-1336.
6. Allard R.W. (1999). Principles of plant breeding. 2nd ed. New York, Wiley.
7. Almekinders C.J.M. and Elings A. (2001). Collaboration of farmers and breeders: participatory crop improvement in perspective. Euphytica 122 : 425–438.
8. Amaranthath K.C. and Viswantaha S.R. (1990). Path coefficient analysis for some quantitative characters in soybean. J. Agric. Sci. 24 (3) : 312-315.).
9. Anhwange B.A., Ikyenge J.B.A., Nyiatagher D.T. and Ageh J.T. (2010). Chemical Analysis of Citrullus lanatus (Thunb.), Cucumeropsis mannii (Naud.) and Telfairia occidentalis (Hook F.) Seeds Oils. Journal of Applied Sciences Research, 6(3) : 265-268.
10. Aziz K., Rehman A. and Rauf A. (1998). Heritability and interrelationships for some plant traits in maize single crosses. Pak. J. Biol. Sci., 1(4): 313-314.
11. Badifu G.I.O. (1993). Food potentials of some unconventional oilseeds grown in Nigeria – a brief review. Plant Foods Hum. Nutr. 43 : 211–224.
12. Balkaya A., Yanmaz R., Apaydın A. and Kar H. (2005). Morphological characterization of white head cabbage (Brassica oleracea var. capitata subvar. alba) genotypes in Turkey. New Zeal. J. Crop Hort. Sci. 33 : 333–341.
13. Becker H.C. (2011). Pflanzenzüchtung. UTB Verlag, Stuttgart.
14. Bello O.B.1., Ige S.A., Azeez M.A., Afolabi M.S., Abdulmaliq S.Y. and Mahamood J. (2012). Heritability and Genetic Advance for Grain Yield and its Component Characters in Maize (Zea mays L.). International Journal of Plant Research 2(5) : 138-145 ; DOI: 10.5923/j.plant.20120205.01.
15. Bishwas S. and Singh B. (2024). Assessment of Heritability, Genetic Advance and Correlation Coefficient in Wheat (Triticum aestivum L.). International Journal of Plant & Soil Science Volume 36, Issue 1, Page 82-88.
16. Boelsma, E., H.F. Hendriks and L. Roza, (2001). Nutritional skin care: health effects of micronutrients and fatty acids. Am. J. Clin. Nutr. 73(5) : 853-864.
17. Brown A.H.D. and Briggs J.D. (1991). Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk, D.A. and HoL Singer, K.E. (Eds.), Genetics and Conservation of Rare Plants. Oxford University Press, Oxford, UK, pp. 99–119.
18. Cervenski J., Gvozdanovic-Varga J. and Glogovac S. (2011). Local cabbage (Brassica oleracea var. capitata L.) populations from Serbian Province of Vojvodina. Afr. J. Biotechnol. 10 : 5281–5285.
19. Chapman C.G.D. (1989). Collection strategies for the wild relatives of field crops. In: Brown A.H.D., Frankel O.H., Marshall D.R. and Williams J.T. (Eds.), The Use of Plant Genetic Resources, Cambridge University Press, Cambridge, USA, pp. 263–279.
20. Cousin R., Massager A. and Vingere A. (1985). Breeding for yield in common peas. The peas Crops. P.H. Hebblethwaite, M.C. Heath and T.C.K. Dawkins (Eds.). Butterworths., 1985, pp 115-129.
21. Das, M., Das S.K. and Suthar S.H. (2002). Composition of seed and characteristics of oil from karingda [Citrullus lanatus (Thumb) Mansf]. Int. J. Food Sci.. Technol. 3 : 893–896.
22. Dewey D.R. and Lu K.H. (1959). A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agron. J. 51 :515-518.
23. Edache O.A. (1996). Maize production and utilization in Nigeria: Problems and prospects. In Proceedings of National Workshop on Maize Production, Kaduna, Nigeria, pp 3-8.
24. Enujiugha V.N. and Ayodele-Oni O. (2003). Evaluation of nutrients and some anti-nutrients in lesser-known, underutilized oilseeds. Int. J. Food Sci. Technol. 38 : 525–528.
25. Evans, L.T. 1993. Crop Evolution, Adaptation and Yield, Cambridge Press, New York, USA.
26. Falconer D.S. (1989). Introduction to Quantitative Genetics. 3rd Edition. Longman; Harlow.
27. Fehr W.R. (1987). Principles of cultivar development. Vol. 1, New York, MacMillan.
28. Gama R.N.C. de S., Santos C.A.F. and Dias R. de C.S. (2013). Genetic variability of watermelon accessions based on microsatellite markers. Genetics and Molecular Research 12 (1) : 747-754.
29. Ghobary H. M. M. (2010). Study of relationships between yield and some yield components in garden pea (Pisum sativum L.), by using correlation and path analysis. J. Agric. Res. Kafer El-Sheikh Uni. 36 : 351-360.
30. Girmay F.D. (2013). Genetic gain in grain yield potential and associated traits of tef [Eragrostis tef (Zucc.) Trotter] in Ethiopia. M.Sc. Thesis, Haramaya University, 104p.
31. Given, D.R. (1987). What the conservationist requires of ex situ collections. In: Branwell, D., Hamann, O., Heywood, V., Synge, H. (Eds.), Botanic Gardens and the World Conservation Strategy. Academic Press, London, pp. 103–116.
32. Gusmini G. (2003). Watermelon (Citrullus lanatus) Breeding Handbook. NC State University, Raleigh.
33. Hardon J.J. and de Boef W. (1993). Linking farmers and breeders in local crop development. In : de Boef W, Amanor K. and Wellard K. (eds), Cultivating knowledge: genetic diversity, farmer experimentation and crop research. Intermediate Technology Publications, London, pp 64–71.
34. Hill J., Becker H.C. and Tigerstedt P.M.A. (1998). Quantitative and Ecological Aspects of Plant Breeding. Chapman and Hall. 275p.
35. Hussain N., Khan M.Y. and Baloch M.S. (2011). Screening of maize varieties for grain yield at Dera Ismail Khan. J. Animal and Plant Sci. 21(3) : 626-628.
36. Jamshidian P., Golparvar A.R., Naderi M.R. and Darkhal H. (2013). Phenotypic correlations and path analysis between ear yield and other associated characters in corn hybrids (Zea mays L.). International Journal of Farming and Allied Sciences 2 : 1273-1276.
37. Johnson H.W., Robinson H.F. and Comstock R.E. (1955). Estimates of genetic and environmental variability in soyebeans. Agron. J. 47 : 314-318.
38. Karademir C., Karademir E., Ekinci R. and Gencer O. (2009). Correlations and Path Coefficient Analysis between Leaf Chlorophyll Content, Yield and Yield Components in Cotton (Gossypium hirsutum L.) under Drought Stress Conditions. Not. Bot. Hort. Agrobot. Cluj., 37(2), 241-244.
39. Kashiani P., Saleh G., Abdullah S.N. and Abdullah N.A.P. (2008). Performance, heritability correlation studies on nine advance sweet corn inbred lines. Proceeding of the 10th Symposium of Malaysian Society of Applied Biology, Nov. 6-8, 2008, Malaysia, pp 48-49.
40. Kaygısız A.T. (2009). Researches on the determination of morphological and molecular characterization of some cabbage genotypes. Master’s Thesis, Ege Univ. Institute of Science, 77 p.
41. Kjellqvist E, (1975). The regional plan for collection, conservation and evaluation of genetic resources. In: Frankel, O.H., Hawkes, J.G. (Eds.), Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, Cambridge, UK.
42. Kouame´ K.K., Gbotto A.A., Malice M., Djè Y., Bertin P., Baudoin J.-P. and Zoro Bi I.A. (2008). Morphological and allozyme variation in a collection of Cucumeropsis mannii Naudin (Cucurbitaceae) from Côte d’Ivoire. Biochemical Systematics and Ecology 36 (2008) 777–789.
43. Lal R.K. (2007). Associations among agronomic traits and path analysis in fennel (Foeniculum vulgare Miller). Journal of Sustainable Agriculture 30(1) : 21-29.
44. Loukou A.L., Gnakri D., Djè,Y., Kippré A.V., Malice M., Baudoin J.-P. and Zoro Bi I..A. (2007). Macronutrient composition of three cucurbit species cultivated for seed consumption in Côte d’Ivoire. Afr. J. Biotechnol. 6 : 529–533.
45. Majid K.R., Roza S., G. Shahzad J. and Roghayyeh Z. (2011). Correlation and Path Analysis Between Yield and Yield Components in Potato (Solanum tuberosum L.). Middle-East Journal of Scientific Research 7(1) : 17-21.
46. Meena M.L., Ram R.B. and Rubee L. (2009). Genetic variability and correlation studies for some quantitative traits in cabbage (Brassica oleracea var. capitata L.) under Lucknow conditions. Prog. Hort. 41 : 89–93.
47. Miller P.A., Williams J.C., Robinson H.F. and Comstock R.E. (1958). Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agron. J. 50 : 126-131.
48. MINITAB Release 19 (2019). Minitab Inc., USA. ISBN 0-925636-48-7.
49. Mitra D.S., Kumar S., Yadav S., Verma S. and Yadav L. (2023). Assessment of Genetic Variability, Heritability and Genetic Advance among Different Characters in Tomato [Solanum lycopersicum (Mill.) Wettsd]. International Journal of Environment and Climate Change 13(11) :2742-2750.
50. Montes-Hernandez S. and Eguiarte L.E. (2002). Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am. J. Bot. 89 : 1156–1163.
51. Najeeb S., Rather A.G., Parray G.A., Sheikh F.A. and Razvi S.M. (2009). Studies on genetic variability, genotypic correlation and path coefficient analysis in maize under high altitude temperate ecology of Kashmir. Maize Genetics Cooperation Newsletter 83 : 1-8.
52. Nelson D.W. and Somers L.E. (1992). Total carbon, total organic carbon and organic matter. In: Miller et al. (ed). Methods of soil analysis, Part 2, 2nd ed. Agronomy Monograph, 27, ASA, Madison, W. I., pp. 539-580.
53. Nigussie M. and Saleh G. (2007). Genetic variability and heritability within sweetcorn (Zea mays saccharata) breeding population. Malays. Appl. Biol. 36 : 5-20.
54. Nuijten E. and van Treuren R. (2007). Spatial and temporal dynamics in genetic diversity in upland rice and late millet (Pennisetum glaucum [L.] R. Br.) in the Gambia. Genet Resour Crop Evol (2007) 54 : 989–1009. DOI 10.1007/s10722-006-9191-4.
55. Ogunniyan D.J.. OlOduwaye O.A., Olakojo S.A. and Ojo D.K. (2015). Genetic variability. repeatability. traits relationships and path coefficient analysis in low nitrogen donor white inbred lines of maize (Zea mays L). Maydica 60 : 1-5.
56. Osuji O.J., Okoli E.B. and Heslop-Harisson, P.J.S. (2006). Cytology and molecular cytogenetics of Cucumeropsis mannii Naudin: implications for breeding and germplasm characterization. Int. J. Botany 2 (2) : 187–192.
57. Perry, M.W. and M.F. d’Antuono. (1989). Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1960 and 1982. Australian Journal of Agricultural Research, 40 : 457-472.
58. Rasaei A., Ghobadi M.-E., Ghobadi M. and Abdi-niya K. (2011). The study of traits correlation and path analysis of the grain yield of the peas in semi-dry conditions in Kermanshah. International Conference on Food Engineering and Biotechnology IPCBEE vol.9 (2011) IACSIT Press, Singapoore.
59. Rasul, M.G., Hiramatsu, M. and Okubo, H. (2007). Genetic relatedness (diversity) and cultivar identification by randomly amplified polymorphic DNA (RAPD) markers in teasle gourd (Momordica dioica Roxb.). Sci. Hortic. 111 : 271–279. International Conference on Food Engineering and Biotechnology 9 : 246-249, IACSIT Press, Singapoore.
60. Robinson H.F., Comstock R.E. and Harvey P.H. (1951). Genotypic and phenotypic correlations in corn and their implications in selection. Agron. J. 43 : 283-287.
61. SAS Institute (2007). JMP User Guide, Release 7. SAS Institute Inc., Cary, NC, USA.ISBN 978-1-59994-408-1.
62. Scod, S. Ariya, P. S. and Singh, Y. (1995). Genetic variability and correlation studies in okra (Abelmoschus esculentus (L.) Moench). Advances in Hort..and Forestry, 4 : 109-118.
63. Sharma K.C., 2010. Genetic variability, characters association and path analysis in exotic lines of cabbage under mid hill, sub-humid conditions of Himachal Pradesh. J. Hill Agr. 1 : 146–150.
64. Simmonds N.W. (1979). Principles of Crop Improvement. Longman Group Ltd. p. 277.
65. Singh B.K., Sharma S.R., Kalia P. and Singh B. (2011). Genetic variability for antioxidants and horticultural traits in cabbage. Indian J. Hortic. 68 : 51–55.
66. Sperling L., Ashby J.A., Smith M.E., Weltzien E. and McGuire S. (2001). A framework for analyzing participatory plant breeding approaches and results. Euphytica 122 : 439–450.
67. Sumathi P., Nirmalakumari A. and Mohanraj K. (2005). Genetic variability and traits interrelationship studies in industrially utilized oil rich CIMMYT lines of maize (Zea mays L). Madras Agric. J. 92 (10-12): 612-617.
68. Teshome A., Fahrig L., Torrance J.K., Lambert J.D., Arnason T.J. and Baum B.R. (1999). Maintenance of sorghum (Sorghum bicolor, Poaceae) landrace diversity by farmers’ selection in Ethiopia. Econ. Bot. 53 : 79–88.
69. Udensi O. and Ikpeme, E.V. (2012). Correlation and Path Coefficient Analyses of Seed Yield and its Contributing Traits in Cajanus cajan (L.) Millsp. American Journal of Experimental Agriculture, 2(3), 351-358.
70. Wannows A.A., Azzam H.K. and Al-Ahmad S.A. (2010). Genetic variances, heritability, correlation and path coefficient analysis in yellow maize crosses (Zea mays L.). Agric. Biol. J. N. Am., 1(4): 630-637.
71. Whitaker T.W. and Davis G.N. (1962). Cucurbits Botany, cultivation and utilization. World Crops Books – Leonard Hill (books) LTD. London ; Interscience Publ., New York.
72. Waddington S.R., Osmanzi M., Yoshida M. and Ransom J.K. (1987). The yield of durum wheat released in Mexico between 1960 and 1984. Journal of Agricultural Science (Camb.) 108 : 469-477.
73. Wood D. and Lenné J.M. (1997). The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodiversity and conservation 6 :109–129.
74. Wricke G. and Weber W.E. (1986). Quantitative Genetics and Selection in Plant Breeding. Walter de Gruyter Verlag, Berlin.
75. Wright S. (1921). Correlation and causation. J. Agri. Res. 20 : 557-585.
76. Zanklan A.S. (2024). Phenotypic variation and Genetic diversity of colocynth (Citrullus colocynthis [L.] Schrad. ) varieties collected in Southeastern of Benin Republic (submitted to Field Crop Research).
77. Zhao H., Zhang Z.B., Shao H.B., Xu P. and Foulkes M.J. (2008). Genetic correlation and path analysis of transpiration efficiency for wheat flag leaves. Environmental and Experimental Botany, 64(2), 128–134.
78. Zoro Bi I., Koffi K.K., Djè Y., Malice M., Baudoin, J.-P. and Baus, E. (2005). Biodiversity of cucurbits consumed as sauce thickener in Côte d’Ivoire: a capital resource for the economic prosperity of rural women. In: Segers, H., Desmet, P. (Eds.), Tropical Biodiversity: Science, Data, Conservation. Global Biodiversity Information Facility (GBIF), Brussels (Belgium), pp. 158–167.
Published
2024-08-21
How to Cite
Zanklan, A. S. (2024). Genetic variability and advance, heritability, Path coefficient analysis and inter-characters relationships in colocynth (Citrullus colocynthis [L.] Schrad.) collected in Southeastern villages of Benin Republic. European Scientific Journal, ESJ, 32, 429. Retrieved from https://eujournal.org/index.php/esj/article/view/18468
Section
ESI Preprints