Effect of Pinus halepensis Mill. Reforestation on the Above-Ground Biomass and Internode Elongation and Leaf Size of Native Species in Morroco

  • Khalid Benarchid Laboratory Eco-Design, Energy, Environment and Innovation Faculty of Sciences and Techniques, Hassan First University, Morocco
  • Mohammed Khatori Laboratory Eco-Design, Energy, Environment and Innovation Faculty of Sciences and Techniques, Hassan First University, Morocco
  • Said Hilali Laboratory Eco-Design, Energy, Environment and Innovation Faculty of Sciences and Techniques, Hassan First University, Morocco
Keywords: Reforestation, Pinus halepensis, Phytomass, Exotic species, Shade

Abstract

This study aims to determine the effect of the reforestation of Pinus halepensis Mill. on the above-ground biomass and morphological characteristics of native species (internode elongation and leaf size) in the Beni Sohane forest. Plant biomass of the herbaceous layer was harvested on randomly selected 2 m2 quadrats in reforested plots of ± 12, ± 25, and ± 45-year-old, and native forest controls. The internode length and leaf size (length and width) were measured on plants randomly selected belonging to four native species Quercus ilex L., Pistacia lentiscus L., Phillyrea angustifolia L., and Cistus creticus L.. The results showed that P. halepensis reforestation had no significant effect on the above-ground biomass and the leaves and internodes dimensions in the young plantations ± 12-year-old. However, as the pine trees mature, the average dry matter weight decreases, especially in stands 45 years old, where this weight was significantly lower than that of natural forests. This fact has led to herders abandoning important pastures previously used by their cattle. In addition, the fast growth of P. halepensis trees formed a canopy above all indigenous species resulting in changes in the dimensions of internodes and leaves. For the two oldest plantations, the internode length, leaf width, and length of the 4 species have been significantly increased. However, the leaf length-to-width ratio decreased significantly, with leaves in reforested plots being larger rather than longer compared to control samples in native forests. Planting P. halepensis can negatively impact the long-term growth of native plants, so we recommend periodically removing some of the pines (thinning) to restore the balance of these ecosystems. Thus, species selection for reforestation should consider maximizing rather than destroying ecological and socioeconomic services.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Bautista, S. (1999). Regeneracio´n post-incendio de un pinar (Pinus halepensis, Miller) en ambiente semia´rido. Erosio´n del suelo y medidas de conservacio´n a corto plazo. Ph.D. Thesis, University of Alicante, Spain.
2. Bautista, S., & Vallejo, V. R. (2002). Spatial variation of post-fire plant recovery in Aleppo pine forests. Fire and biological processes, 13-24.Bautista, S., & Vallejo, V. R. (2002). Spatial variation of post-fire plant recovery in Aleppo pine forests. Fire and biological processes,. 13-24.
3. Bello-Rodríguez, V., Cubas, J., Fernández, Á. B., Del Arco Aguilar, M. J., & González-Mancebo, J. M. (2020). Expansion dynamics of introduced Pinus halepensis Miller plantations in an oceanic island (La Gomera, Canary Islands). Forest Ecology and Management, 474, 118374. https://doi.org/10.1016/j.foreco.2020.118374
4. Bellot, J., Maestre, F. T., Chirino, E., Hernández, N., & de Urbina, J. O. (2004). Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecologica, 25(1), 7-15. https://doi.org/10.1016/j.actao.2003.10.001
5. Benabdeli, K. (1998). Premiers résultats dendrométriques des plantations de pin d’Alep (Pinus halepensis mill.) dans le barrage vert (zone d’Aflou, Algérie)—Persée. https://www.persee.fr/doc/ecmed_0153-8756_1998_num_24_1_1846
6. Benarchid, K., Khatori, M., & Hilali, S. b. (2018). Impact De La Reforestation De Pinus halepensis Sur La biodiversité dans La forêt Beni Sohane (Ribat Al Kheir-Maroc). 13th International Scientific Forum, ISF 2018, 149.
7. Benarchid, K., Mohammed Khatori, & Hilali, S. (2022). Effect of Pinus halepensis reforestation on soil fertility in the forest of Beni Sohane (Ribat Al Kheir Region -Morocco). Eco. Env. & Cons, 28(1), 78-85. https://doi.org/DOI No.: http://doi.org/10.53550/EEC.2022.v28i01.011
8. Bonin, G., Bousquet-Melou, A., Lelong, B., Voiriot, S., Nozay, S., & Fernandez, C. (2007). Expansion du pin d’Alep. Rôle des processus allélopathiques dans la dynamique successionnelle. Forêt Méditerranéenne, XXVIII(3), 211-218.
9. Chaparro, J., & Esteve, M. A. (1996). Criterios para restaurar la vegetación en ambientes mediterráneos semiáridos. Quercus, 121 (p. 14-17).
10. Chirino, E., Bonet, A., Bellot, J., & Sánchez, J. R. (2006). Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in southeastern Spain. CATENA, 65(1), 19-29. https://doi.org/10.1016/j.catena.2005.09.003
11. Clendon, J. H. M., & Millen, G. G. M. (1982). The Control of Leaf Morphology and the Tolerance of Shade by Woody Plants. Botanical Gazette, 143(1), 79-83.
12. de Rigo, D., & Caudullo, G. (2016). Quercus ilex in Europe: Distribution, habitat, usage and threats. In : San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. E014bcd+ (p. 152-153).
13. Eckardt, F., Berger, A., Methy, M., Heim, G., & Sauvezon, R. (1978). Interception de I’energie rayonnante, echanges de C02, regime hydrique et production chez differents types de vegetation sous climat mediterraneen. In : Moyse A (ed) Les processus de la production vegetale primaire. Geobiologie, ecologie, amenagement. Gauthier-Villars, Paris, pp 1-75. http://geoprodig.cnrs.fr/items/show/113841
14. Emberger, L. (1955). Une classification biogéographique des climats, vol. 7. Recueil des Travaux de l’Institut Botanique de l’Universite de Montpellier, 3-43.
15. Fernandez, C., Santonja, M., Gros, R., Monnier, Y., Chomel, M., Baldy, V., & Bousquet-Mélou, A. (2013). Allelochemicals of Pinus halepensis as Drivers of Biodiversity in Mediterranean Open Mosaic Habitats During the Colonization Stage of Secondary Succession. Journal of Chemical Ecology, 39(2), 298-311. https://doi.org/10.1007/s10886-013-0239-6
16. Fiorucci, A.-S., & Fankhauser, C. (2017). Plant Strategies for Enhancing Access to Sunlight. Current Biology, 27(17), R931-R940. https://doi.org/10.1016/j.cub.2017.05.085
17. Floret, C., & Pontanier, R. (1982). L’aridité en Tunisie présaharienne : Climat, sol, végétation et aménagement. Office de la Recherche Scientifique et Technique Outre Mer.
18. Franklin, K. A. (2008). Shade avoidance. New Phytologist, 179(4), 930-944. https://doi.org/10.1111/j.1469-8137.2008.02507.x
19. Gommers, C. M. M., Visser, E. J. W., St Onge, K. R., Voesenek, L. A. C. J., & Pierik, R. (2013). Shade tolerance: When growing tall is not an option. Trends in Plant Science, 18(2), 65-71. https://doi.org/10.1016/j.tplants.2012.09.008
20. Gratani, L. (2014). Plant Phenotypic Plasticity in Response to Environmental Factors. Advances in Botany, 2014, e208747. https://doi.org/10.1155/2014/208747
21. Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B., & Hermy, M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters, 5(4), 525-530. https://doi.org/10.1046/j.1461-0248.2002.00346.x
22. Inderjit, & Duke, S. O. (2003). Ecophysiological aspects of allelopathy. Planta, 217(4), 529-539. https://doi.org/10.1007/s00425-003-1054-z
23. Inderjit, & Keating, K. I. (1999). Allelopathy: Principles, Procedures, Processes, and Promises for Biological Control. In D. L. Sparks (Éd.), Advances in Agronomy (Vol. 67, p. 141-231). Academic Press. https://doi.org/10.1016/S0065-2113(08)60515-5
24. Lawson, S. S., & Michler, C. H. (2014). Afforestation, restoration and regeneration—Not all trees are created equal. Journal of Forestry Research, 25(1), 3-20. https://doi.org/10.1007/s11676-014-0426-5
25. Lichtenthaler, H. K., Ac, A., Marek, M. V., Kalina, J., & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry: PPB, 45(8), 577-588. https://doi.org/10.1016/j.plaphy.2007.04.006
26. Lookingbill, T. R., & Zavala, M. A. (2000). Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. Journal of Vegetation Science, 11(4), 607-612. https://doi.org/10.2307/3246590
27. Maestre, F., Cortina, J., Bautista, S., & Bellot, J. (2003). Does Pinus halepensis facilitate the establishment of shrubs in Mediterranean semi-arid afforestations? For Ecol Manage. Forest Ecology and Management, 176, 147-160. https://doi.org/10.1016/S0378-1127(02)00269-4
28. Mechergui, K., Naghmouchi, S., Alsubeie, M. S., Jaouadi, W., & Ammari, Y. (2022). Biomass, radial growth and regeneration capacity of Aleppo pine, and its possible use as rootstock in arid and degraded areas. iForest - Biogeosciences and Forestry, 15(3), 213. https://doi.org/10.3832/ifor3954-015
29. Paz-Kagan, T., Zaady, E., Shachak, M., & Karnieli, A. (2016). Transformation of shrublands to forests : The role of woody species as ecosystem engineers and landscape modulators. Forest Ecology and Management, 361, 257-268. https://doi.org/10.1016/j.foreco.2015.11.021
30. Pérez-Devesa, M., Cortina, J., Vilagrosa, A., & Vallejo, R. (2008). Shrubland management to promote Quercus suber L. establishment. Forest Ecology and Management, 255(3), 374-382. https://doi.org/10.1016/j.foreco.2007.09.074
31. Randriambanona, H., Randriamalala, J. R., & Carrière, S. M. (2019). Native forest regeneration and vegetation dynamics in non-native Pinus patula tree plantations in Madagascar. Forest Ecology and Management, 446, 20-28. https://doi.org/10.1016/j.foreco.2019.05.019
32. Reisman-Berman, O., Keasar, T., & Tel-Zur, N. (2019). Native and non-native species for dryland afforestation: Bridging ecosystem integrity and livelihood support. Annals of Forest Science, 76(4), Article 4. https://doi.org/10.1007/s13595-019-0903-2
33. Richardson, D. M., & Nsikani, M. M. (2021). Mediterranean pines as invasive species in the Southern Hemisphere. Pines and their mixed forest ecosystems in the Mediterranean Basin, 83-99.
34. Rizvi, S. J. (2012). Allelopathy: Basic and applied aspects. Springer Science & Business Media.
35. Ruiz-Navarro, A., Barberá, G. G., Navarro-Cano, J. A., Albaladejo, J., & Castillo, V. M. (2009). Soil dynamics in Pinus halepensis reforestation : Effect of microenvironments and previous land use. Geoderma, 153(3-4), 353-361.
https://doi.org/10.1016/j.geoderma.2009.08.024
36. S.E.I. (2014). Société Environnement Ingénierie SARL. Etude d’aménagement de la forêt de Beni Sohane. Rapport n°1. Haut Commissariat aux Eaux et Forêt et de la Lutte Contre la Desrtification de Fès- Boulmane. 41 p.
37. Terashima, I., Hanba, Y. T., Tazoe, Y., Vyas, P., & Yano, S. (2006). Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany, 57(2), 343-354.
https://doi.org/10.1093/jxb/erj014
38. Ugarte, C. C., Trupkin, S. A., Ghiglione, H., Slafer, G., & Casal, J. J. (2010). Low red/far-red ratios delay spike and stem growth in wheat. Journal of Experimental Botany, 61(11), 3151-3162.
https://doi.org/10.1093/jxb/erq140
39. Wu, Y., Gong, W., & Yang, W. (2017). Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean. Scientific Reports, 7(1), 9259. https://doi.org/10.1038/s41598-017-10026-5
Published
2024-08-31
How to Cite
Benarchid, K., Khatori, M., & Hilali, S. (2024). Effect of Pinus halepensis Mill. Reforestation on the Above-Ground Biomass and Internode Elongation and Leaf Size of Native Species in Morroco. European Scientific Journal, ESJ, 20(24), 192. https://doi.org/10.19044/esj.2024.v20n24p192
Section
ESJ Natural/Life/Medical Sciences