Selection and Phenotypic Stability of M4 Mutants of Pearl Millet (Pennisetum glaucum (L.) R. Br.) Derived from Gamma Rays Induced Mutagenesis

  • Mouhamadou Mounkaila Boureima Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
  • Sani Daouda Ousmane Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
  • Abdoul-Bachir Issa Yacouba Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
  • Abdoul Razak Sani Daoud Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
  • Nassirou Mahamadou Adamou Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
  • Mamane Nassourou Lawali Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
  • Illiassa Soumaila Sounakoye Université Abdou Moumouni, Institut des Radio Isotopes, Niamey, Niger
Keywords: Pearl millet, Gamma rays, M4 mutants, Crop breeding, Morphological diversity

Abstract

Gamma irradiation mutagenesis is an approach that offers a wide range of possibilities for varietal selection. It consists of simultaneously inducing multiple mutations to modify several plant traits. The aim of the present study was to select seed lots for four mutants in the M4 generation. An experiment was carried out in an experimental plot to purify drought-tolerant M4 genotypes based on morphological characteristics. Potential mutants MI 02/82, MI 13/63, MI 12/72 and MI 10/54 were tested in a randomized complete block design. The parameters measured are the number of tillers, stem height, number of internodes, number of ears, ear length, stem and spike diameters and cycle duration. The results show on morphological parameters that MI 13/63 and MI 10/54 genotypes as an homogeneous population from M4 onwards. MI 12/72 can be classified into two different subgroups according to ear length. MI 02/82, on the other hand, shows a high degree of variability at M4. These results will contribute to the selection of new varieties adapted to the requirements of rural producers to improve pearl millet productivity in Niger.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Abdalla, M., Yassein, H.E., & Okasha, M. (2016). Mutagenic effect of dimethyl sulphate and gamma rays on pearl millet (Pennisetum glaucum, L.). Al-Azhar Journal for Agricaltural Researches, 26, 293‑307.
2. Abdullah, S., Kamaruddin, N. Y., & Harun, A. R. (2018). The Effect of Gamma Radiation on Plant Morphological Characteristics of Zingiber officinale Roscoe. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2085‑2091. https://doi.org/10.18517/ ija seit.8.5.4641.
3. Addai, I., & Yahaya, B. (2018). Response of pearl millet (Pennicetum glaucum.) to experimental mutagenesis in the Guinea Savannah agro-ecology of Ghana. Ghana Journal of Development Studies, 15, 22. https://doi.org/ 10. 4314/gjds.v15i1.2.
4. Ambli, K., & Mullainathan, L. (2015). Chlorophyll and morphological mutants of Pearl millet (Pennisetum typhoides (Burn.) stapf. Var. CO (cu)9. Euro. J. Exp. Bio., 2015, 5(3) :72-77.
5. Ambli, L. (2018). Effect of mutagens on quantitative characters in M3 generation of pearl millet (Pennisetum typhoides (BURN.F) STAPF. AND C.E. HUBB.). Journal of Phytology, 01‑05. https://doi.org/10.25081/ jp.2018. v10.3404.
6. ARISTYA, V. E., Taryono, & Rani, A. W. (2017). Evaluation of genetic parameters in M4 and M5 generations of sesame mutant lines. SABRAO J. Breed. Genet. 49 (2) 201-201 https://acadstaff.ugm.ac.id/karya_files/ evalua tion-of-genetic-parameters-in-m4-and-m5-generations-of-sesame-mutant-lin es-28f1 79 c7eedf73fbb790ac461804b086.
7. Bella, R. A. (2021). Improvement of Rice Phenotype of M4 Sigupai Irradiated by Gamma Ray. Journal of Agriculture and Veterinary Science (IOSR-JAVS) 2319-2372. Volume 14, Issue 3 Ser. II PP 36-41. https://doi.org/ 10.9790/2380-1403023641.
8. Benoit, S., & Mandéla, H. (2015). Atlas agroclimatique sur la variabilité et le changement climatique au Niger (p. 37). Agrhymet /CILLS. https://duddal. org/files/original/ 863a2c 907349898300cea 1414798ffc 0dc0d 56fa.pdf.
9. Beyaz, R., & Yildiz, M. (2017). The Use of Gamma Irradiation in Plant Mutation Breeding. In S. Jurić (Éd.), Plant Engineering. InTech. https:// doi. org/10.5772/intechopen.69974.
10. Hanifah, W. N., Parjanto, P., Hartati, S., & Yunus, A. (2020). The performances of M4 generation of Mentik Susu rice mutants irradiated with gamma-ray. Biodiversitas Journal of Biological Diversity, 21(9), Article 9. https :// doi.org/10.13057/ biodiv/ d210915.
11. Hase, Y., Satoh, K., Seito, H., & Oono, Y. (2020). Genetic Consequences of Acute/Chronic Gamma and Carbon Ion Irradiation of Arabidopsis thaliana. Frontiers in Plant Science, Front Plant Sci. 25 :11:336. doi: 10.3389/fpls. 20 20.00336. eCollection 2020.
12. Hazra, S., Gorai, S., Bhattacharya, S., Bose, S., Hazra, P., Chattopadhyay, A., & Maji, A. (2022). Radio-sensitivity of diverse tomato genotypes with respect to optimization of gamma irradiation dose. Brazilian Journal of Botany, 45(3), 917‑927. https://doi.org/ 10.1007/s40415-022-00823-2.
13. Kazama, Y., Ishii, K., Hirano, T., Wakana, T., Yamada, M., Ohbu, S., & Abe, T. (2017). Different mutational function of low‐ and high‐linear energy transfer heavy‐ion irradiation demonstrated by whole‐genome resequencing of Arabidopsis mutants. The Plant Journal, 92(6), 1020‑1030. https://doi.org/ 10.1111/tpj.13738.
14. MA/Niger. (2021). Catalogue National des Espèces et Variétés Végétales (2 ; p. 304). Ministère de l’Agriculture. https://reca-niger.org/IMG/pdf/ cata logue_des_especes_et_varietes_ niger.pdf.
15. Maryono, M., Sihono, Indriatama, W. M., & Human, S. (2020). Performance and estimation genetic variability of M3 pearl millet (Pennisetum glaucum) populations. IOP Conference Series: Earth and Environmental Science, 484(1), 012021. https://doi.org/ 10.1088/1755-1315/484/1/012021.
16. Naoura, G., Sawadogo, N., Djirabaye, N., & Hassane, M. (2020). Agronomic performance of improved pearl millet cultivars in southern Chad. International Journal of Biological and Chemical Sciences, 14, 2980‑2991. https://doi.org/10.4314/ijbcs.v14i9.2.
17. Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement : A review. Biotechnology & Biotechnological Equipment, 30(1), 1‑16. https://doi.org/10.1080/ 131028 18. 2015.1087333.
18. PA, G., HS, P., PR, P., & Donga, A. (2023). Study of genetic variability, heritability and genetic advance for yield and its component traits in pearl millet [Pennisetum glaucum (L.) R. Br.]. The Pharma Innovation, 12, 4305‑4308. https://doi.org/10.22271/ tpi.2023. v 12. i3au.19425.
19. Patil, K. S., Gupta, S., Dangi, K., Shashibhushan, D., Balram, M., & Ramesh, T. (2018). Panicle Traits and Plant Height are Important Selection Indices to Enhance Productivity in Pearl Millet (Pennisetum glaucum L.R.Br.) Populations. International Journal of Current Microbiology and Applied Sciences, 7, 306‑312. https : // doi.org/ 10. 205 46/ ijcmas.2018.712.037.
20. Saibari, I., Barrijal, S., Mouhib, M., Belkadi, N., & Hamim, A. (2023). Gamma irradiation-induced genetic variability and its effects on the phenotypic and agronomic traits of groundnut (Arachis hypogaea L.). Frontiers in Genetics, 14. https: //www.frontiersin. org/articles/10.3389/ fge ne. 2023. 1124632.
21. Satyavathi, C. T., Ambawat, S., Khandelwal, V., & Srivastava, R. K. (2021). Pearl Millet : A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Frontiers in Plant Science, 12. https://www.frontiersin.org/ articles/10.3389/ fpls.2021.659938.
22. Serba, D. D., Perumal, R., Tesso, T. T., & Min, D. (2017). Status of Global Pearl Millet Breeding Programs and the Way Forward. Crop Science, 57(6), 2891‑2905. https:// doi.org/10.2135/cropsci2016.11.0936.
23. Singh, S., Y, P., H, P., D, V., & Yadav, N. (2016). Morphological characterization of pearl millet hybrids [Pennisetum glaucum (L.) R. Br.] and their parents. African Journal of Agricultural Research, 11, 371‑378. https://doi.org/10.5897/AJAR2015.10333.
24. Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Wang, X., Rathore, A., Srivastava, R. K., Chitikineni, A., Fan, G., Bajaj, P., Punnuri, S., Gupta, S. K., Wang, H., Jiang, Y., Couderc, M., Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35(10), 969‑976. https://doi.org/10.1038/nbt.3943.
25. Yahaya, Y. (2015). Correlation and Heritability in Pearl Millet (Pennisetum glaucum (L) R. Br). African Journal of Agronomy ISSN : 2375-1185 Vol. 3 (3), pp. 257-258. Available online atwww.international scholars journals.org.
Published
2024-09-08
How to Cite
Boureima, M. M., Ousmane, S. D., Yacouba, A.-B. I., Daoud, A. R. S., Adamou, N. M., Lawali, M. N., & Sounakoye, I. S. (2024). Selection and Phenotypic Stability of M4 Mutants of Pearl Millet (Pennisetum glaucum (L.) R. Br.) Derived from Gamma Rays Induced Mutagenesis. European Scientific Journal, ESJ, 33, 124. Retrieved from https://eujournal.org/index.php/esj/article/view/18542
Section
ESI Preprints