Selection and phenotypic stability of M4 mutants of pearl millet (Pennisetum glaucum (L.) R. Br.) derived from gamma rays induced mutagenesis in Niger

  • Mounkaila Boureim Mouhamadoua Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
  • Daouda Ousmane Sani Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
  • Issa Yacouba Abdoul-Bachir Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
  • Sani Daouda Abdoul Razak Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
  • Mahamadou Adamou Nassirou Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
  • Lawali Mamane Nassourou Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
  • Soumaila Sounakoye Illiassa Institut des Radio Isotopes, Université Abdou Moumouni, Niamey, Niger
Keywords: Pearl millet - Gamma rays - M4 mutants - Crop breeding - Morphological diversity

Abstract

Gamma irradiation mutagenesis is an approach that offers a wide range of possibilities for varietal selection.  In the simultaneous induction of multiple mutations to modify several plant traits. The aim of the present study was to select seed lots for four mutants of the M4 generation. An experiment was carried out in an experimental plot to purify drought-tolerant M4 genotypes based on morphological characteristics. Potential mutants MI 02/82, MI 13/63, MI 12/72, and MI 10/54 were tested in a randomized complete block design. The parameters measured were: the number of tillers, stem height, number of internodes, number and length of ears, stem and spike diameters, and cycle duration. A dendrogram was first generated to identify the homogenous subgroups. Then an analysis of variance ANOVA was conducted between individuals of the same subgroups to evaluate the variance. On morphological parameters, results showed that MI 13/63 and MI 10/54 genotypes have a homogeneous population from M4 onwards. MI 12/72 can be classified into two different subgroups according to ear length. MI 02/82, on the other hand, showed a high degree of variability at M4. These results will contribute to the selected new varieties adapted to the needs of rural producers in order to improve the productivity of pearl millet in Niger.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Abdalla, M., Yassein, H.E., & Okasha, M. (2016). Mutagenic effect of dimethyl sulphate and gamma rays on pearl millet (Pennisetum glaucum, L.). Al-Azhar Journal for Agricaltural Researches, 26, 293‑307.
2. Abdullah, S., Kamaruddin, N. Y., & Harun, A. R. (2018). The Effect of Gamma Radiation on Plant Morphological Characteristics of Zingiber officinale Roscoe. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2085‑2091. https://doi.org/10.18517/ijaseit.8.5.4641
3. Addai, I., & Yahaya, B. (2018). Response of pearl millet (Pennicetum glaucum.) to experimental mutagenesis in the Guinea Savannah agro-ecology of Ghana. Ghana Journal of Development Studies, 15, 22. https://doi.org/10.4314/gjds.v15i1.2
4. Ambli, K., & Mullainathan, L. (2015). Chlorophyll and morphological mutants of Pearl millet (Pennisetum typhoides (Burn.) stapf. Var. CO (cu)9. Euro. J. Exp. Bio., 2015, 5(3) :72-77.
5. Ambli, L. (2018). Effect of mutagens on quantitative characters in M3 generation of pearl millet (Pennisetum typhoides (BURN.F) STAPF. AND C.E. HUBB.). Journal of Phytology, 01‑05. https://doi.org/10.25081/jp.2018.v10.3404
6. ARISTYA, V. E., Taryono, & Rani, A. W. (2017). Evaluation of genetic parameters in M4 and M5 generations of sesame mutant lines. SABRAO J. Breed. Genet. 49 (2) 201-201 https://acadstaff.ugm.ac.id/karya_files/ evalua tion-of-genetic-parameters-in-m4-and-m5-generations-of-sesame-mutant-lines-28f1 79 c7eedf73fbb790ac461804b086
7. Bella, R. A. (2021). Improvement of Rice Phenotype of M4 Sigupai Irradiated by Gamma Ray. 2319-2372. Volume 14, Issue 3 Ser. II PP 36-41. https://doi.org/10.9790/2380-1403023641
8. Benoit, S., & Mandéla, H. (2015). Atlas agroclimatique sur la variabilité et le changement climatique au Niger (p. 37). Agrhymet /CILLS. https://duddal.org/files/original/ 863a2c 907349898300cea1414798ffc0dc0d56fa.pdf
9. Beyaz, R., & Yildiz, M. (2017). The Use of Gamma Irradiation in Plant Mutation Breeding. In S. Jurić (Éd.), Plant Engineering. InTech. https://doi.org/10.5772/intechopen.69974
10. Hanifah, W. N., Parjanto, P., Hartati, S., & Yunus, A. (2020). The performances of M4 generation of Mentik Susu rice mutants irradiated with gamma-ray. Biodiversitas Journal of Biological Diversity, 21(9), Article 9. https :// doi.org/10.13057/ biodiv/ d210915
11. Hase, Y., Satoh, K., Seito, H., & Oono, Y. (2020). Genetic Consequences of Acute/Chronic Gamma and Carbon Ion Irradiation of Arabidopsis thaliana. Frontiers in Plant Science, Front Plant Sci. 25 :11:336. doi: 10.3389/fpls.2020.00336. eCollection 2020.
12. Hazra, S., Gorai, S., Bhattacharya, S., Bose, S., Hazra, P., Chattopadhyay, A., & Maji, A. (2022). Radio-sensitivity of diverse tomato genotypes with respect to optimization of gamma irradiation dose. Brazilian Journal of Botany, 45(3), 917‑927. https://doi.org/ 10.1007/s40415-022-00823-2
13. Kazama, Y., Ishii, K., Hirano, T., Wakana, T., Yamada, M., Ohbu, S., & Abe, T. (2017). Different mutational function of low‐ and high‐linear energy transfer heavy‐ion irradiation demonstrated by whole‐genome resequencing of Arabidopsis mutants. The Plant Journal, 92(6), 1020‑1030. https://doi.org/10.1111/tpj.13738
14. MA/Niger. (2021). Catalogue National des Espèces et Variétés Végétales (2 ; p. 304). Ministère de l’Agriculture. https://reca-niger.org/IMG/pdf/catalogue_des_especes_et_varietes_ niger.pdf
15. Maryono, M., Sihono, Indriatama, W. M., & Human, S. (2020). Performance and estimation genetic variability of M3 pearl millet (Pennisetum glaucum) populations. IOP Conference Series: Earth and Environmental Science, 484(1), 012021. https://doi.org/ 10.1088/1755-1315/484/1/012021
16. Naoura, G., Sawadogo, N., Djirabaye, N., & Hassane, M. (2020). Agronomic performance of improved pearl millet cultivars in southern Chad. International Journal of Biological and Chemical Sciences, 14, 2980‑2991. https://doi.org/10.4314/ijbcs.v14i9.2
17. Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement : A review. Biotechnology & Biotechnological Equipment, 30(1), 1‑16. https://doi.org/10.1080/13102818.2015.1087333
18. PA, G., HS, P., PR, P., & Donga, A. (2023). Study of genetic variability, heritability and genetic advance for yield and its component traits in pearl millet [Pennisetum glaucum (L.) R. Br.]. The Pharma Innovation, 12, 4305‑4308. https://doi.org/10.22271/ tpi.2023. v 12. i3au.19425
19. Patil, K. S., Gupta, S., Dangi, K., Shashibhushan, D., Balram, M., & Ramesh, T. (2018). Panicle Traits and Plant Height are Important Selection Indices to Enhance Productivity in Pearl Millet (Pennisetum glaucum L.R.Br.) Populations. International Journal of Current Microbiology and Applied Sciences, 7, 306‑312. https : // doi.org/ 10. 205 46/ ijcmas.2018.712.037
20. Saibari, I., Barrijal, S., Mouhib, M., Belkadi, N., & Hamim, A. (2023). Gamma irradiation-induced genetic variability and its effects on the phenotypic and agronomic traits of groundnut (Arachis hypogaeaL.). Frontiers in Genetics, 14. https://www.frontiersin. org/articles/10.3389/fgene.2023.1124632
21. Satyavathi, C. T., Ambawat, S., Khandelwal, V., & Srivastava, R. K. (2021). Pearl Millet : A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Frontiers in Plant Science, 12. https://www.frontiersin.org/ articles/10.3389/ fpls.2021.659938
22. Serba, D. D., Perumal, R., Tesso, T. T., & Min, D. (2017). Status of Global Pearl Millet Breeding Programs and the Way Forward. Crop Science, 57(6), 2891‑2905. https:// doi.org/10.2135/cropsci2016.11.0936
23. Singh, S., Y, P., H, P., D, V., & Yadav, N. (2016). Morphological characterization of pearl millet hybrids [Pennisetum glaucum (L.) R. Br.] and their parents. African Journal of Agricultural Research, 11, 371‑378. https://doi.org/10.5897/AJAR2015.10333
24. Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Wang, X., Rathore, A., Srivastava, R. K., Chitikineni, A., Fan, G., Bajaj, P., Punnuri, S., Gupta, S. K., Wang, H., Jiang, Y., Couderc, M., Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35(10), 969‑976. https://doi.org/10.1038/nbt.3943
25. Yahaya, Y. (2015). Correlation and Heritability in Pearl Millet (Pennisetum glaucum (L) R. Br). African Journal of Agronomy ISSN : 2375-1185 Vol. 3 (3), pp. 257-258. Available online atwww.internationalscholarsjournals.org
Published
2024-11-30
How to Cite
Mouhamadoua, M. B., Sani, D. O., Abdoul-Bachir, I. Y., Razak, S. D. A., Nassirou, M. A., Nassourou, L. M., & Illiassa, S. S. (2024). Selection and phenotypic stability of M4 mutants of pearl millet (Pennisetum glaucum (L.) R. Br.) derived from gamma rays induced mutagenesis in Niger. European Scientific Journal, ESJ, 20(33), 76. https://doi.org/10.19044/esj.2024.v20n33p76
Section
ESJ Natural/Life/Medical Sciences