Biosynthesis of Silver Nanoparticles using Ajuca ive Leaf Extract and Assessment of their Activity on E. coli and Streptococcus bacteria
Abstract
Silver nanoparticle synthesis from plant extracts has been widely used in medicine, particularly as an antibacterial agent. In the present study, Ajuca ive leaf extract was performed using an aqueous solution tested for its phytochemical components. The results of the phytochemical analysis of Ajuca ive leaf extract had alkaloids, carbohydrates, proteins, flavonoids, phenols, saponins, and coumarins. Synthesis of silver nanoparticles was performed using Ajuca ive leaf extract with a 1 mM solution of silver nitrate. The synthesized silver nanoparticles were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), and Fourier Transform Infra-Red (FTIR) spectrum. SEM analysis revealed the size of the AgNPs of 36 nm, 55 nm, 70 nm, 100, and 300 nm. The EDX study showed that the optical absorption peak was detected at 3 keV, the characteristic peak for the absorbed metallic silver nanoparticles. FTIR analysis identified the possible functional group involved in reducing silver metal ions into silver nanoparticles. In addition, the antibacterial activity of synthesized silver nanoparticles was also examined and the results showed good antibacterial activities against E. coli and Streptococcus bacteria.
Downloads
Metrics
References
2. Khan I., and Saeed, K& Khan, I. (2017).Nanoparticles: Properties, applications and toxicities, Arbian Journal of Chemistry, 1-24. http://creativecommons.org/licenses/by-nc-nd/4.0/
3. Xu, Zhi & Zeng, Qinghua & Lu, Max & Yu, Aibing. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science. 61. 1027-1040. 10.1016/j.ces.2005.06.019
4. Gurunathan, S., Han, J., Park, J. H., & Kim, J. H. (2014). A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale research letters, 9(1), 248. https://doi.org/10.1186/1556-276X-9-248
5. Gurunathan, S., Park, J. H., Han, J. W., & Kim, J. H. (2015). Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. International journal of nanomedicine, 10, 4203–4222 https://doi.org/10.2147/IJN.S83953.
6. Chen, Y., Wang, C., Liu, H., Qiu, J., & Bao, X. (2005). Ag/SiO2: a novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chemical communications (Cambridge, England), (42), 5298–5300. https://doi.org/10.1039/b509595f
7. Li, Z., Lee, D., Sheng, X., Cohen, R. E., & Rubner, M. F. (2006). Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir : the ACS journal of surfaces and colloids, 22(24), 9820–9823. https://doi.org/10.1021/la0622166
8. Setua, Palash & Chakraborty, Anjan & Seth, Debabrata & Bhatta, Umananda & Satyam, P. & Sarkar, Nilmoni. (2007). Synthesis, Optical Properties, and Surface Enhanced Raman Scattering of Silver Nanoparticles in Nonaqueous Methanol Reverse Micelles. Journal of Physical Chemistry C - J PHYS CHEM C. 111. 10.1021/jp067475i
9. Khatoon, A., khan, F., Ahmad, N., Shaikh, S., Mohd, S., Rizvi, D., Shakil,S., Ai-Qahtani,M.H., Abuzenadah, A. M,. Tabrez, S., Ahamed, A.B.F., Alafnan,A., Islam, H., Iqbal, D and Dutta, R. (2018). Silver nanoparticles from leaf extract of Mentha piperita: Eco-friendly synthesis and effect on acetylcholinesterase activity. Life Sciences, 209, 430-434. https://doi.org/10.1016/j.lfs.2018.08.046
10. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Pasricha, R., & Sastry, M. (2001). Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters, 1(10), 515-519. https://doi.org/10.1021/nl0155274
11. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H. and Sangiliyandi, G. (2008) Extracellular Biosynthesis of Silver Nanoparticles by the Culture Supernatant of Bacillus licheniformis. Materials Letters, 62, 4411-4413. https://doi.org/10.1016/j.matlet.2008.06.051
12. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and surfaces. B, Biointerfaces, 74(1), 328–335. https://doi.org/10.1016/j.colsurfb.2009.07.048
13. Akhtar, Mohd Sayeed & Panwar, Jitendra & Yun, Yeoung-Sang. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering. 1. 591-602. https://www.researchgate.net/publication/278785701.
14. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of colloid and interface science, 275(2), 496–502. https://doi.org/10.1016/j.jcis.2004.03.003.
15. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green chemistry, 13(10), 2638-2650. https://www.researchgate.net/publication/221670104.
16. Rai, M., & Yadav, A. (2013). Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET nanobiotechnology, 7(3), 117–124. https://doi.org/10.1049/iet-nbt.2012.0031
17. Dubey, M., Bhadauria, S., and Kushwah, B. (2009). Green synthesis of nanosilver particles from extract of Eucalyptus hybrid (safeda) leaf. Degest Journal of nanometer biostruct, 4, 537-543.
18. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, N.J. and Chen, C. (2007) Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaves. Nanotechnology, 18, 105104-105115.
https://doi.org/10.1088/0957-4484/18/10/105104.
19. Sehnal, K., Ozdogan,Y., Stankova, M., Tothova, Z., Uhlirova, D., Vsetickova, M., Hosnedlova, B., Kepinska, M., Ruttkay-Nedecky, B., Fernandez, C., Hari, V., Sochor, J., Milnerowicz, H and Kizek, R. 2019. Effect of silver nanoparticles (AgNPs) prepared by green synthesis from sage leaves (salvia officinalis) on maize chlorophyll content. In Proceedings of 11th Nanomaterials international conference 2019 (NANOCON 2019): research and applications, 16-18 October 2019, Brno, Czech Republic. Ostrava: Tanger Ltd, pages 457-462. Available from: https://doi.org/10.37904/nanocon.2019.8521
20. Miara, M.D., Hammou, M.A. & Aoul, S.H. Phytothérapie et taxonomie des plantes médicinales spontanées dans la région de Tiaret (Algérie). Phytothérapie 11, 206–218 (2013). https://doi.org/10.1007/s10298-013-0789-3
21. Boran, Ni & Dong, X & Fu, J & Xingbin, Y & Longfei, L & Zhenwen, X & Yang, Z & Xue, D & Yang, C & Ni, J.(2015). Phytochemical and Biological Properties of Ajuga decumbens (Labiatae): A Review. Tropical Journal of Pharmaceutical Research. 14. 1525. 10.4314/tjpr.v14i8.28
22. Coll J. (2002). NMR shift data of neo-clerodane diterpenes from the genus Ajuga. Phytochemical analysis : PCA, 13(6), 372–380. https://doi.org/10.1002/pca.671
23. Medjeldi, S., Bouslama, L., Benabdallah, A., Essid, R., Haou, S., & Elkahoui, S. (2018). Biological activities, and phytocompounds of northwest Algeria Ajuga iva (L) extracts: Partial identification of the antibacterial fraction. Microbial pathogenesis, 121, 173–178. https://doi.org/10.1016/j.micpath.2018.05.022
24. Tahraoui, A.; Israili, Z.H.; Lyoussi, B. (2017). Hypoglycemic and hypolipidemic effects of aqueous extracts of Ajuga iva and Centaurium erythreae on a rodent model of metabolic syndrome. Nat Prod J 7(1), 47-57.10.2174/2210315506666161024122601
25. Boudjelal, A., Siracusa, L., Henchiri, C., Sarri, M., Abderrahim, B., Baali, F., & Ruberto, G. (2015). Antidiabetic Effects of Aqueous Infusions of Artemisia herba-alba and Ajuga iva in Alloxan-Induced Diabetic Rats. Planta medica, 81(9), 696–704. https://doi.org/10.1055/s-0035-1546006
26. Naghibi, F., Mosaddegh, M., Mohammadi, S., Motamed, M. and Ghorbani, A. (2005) Labiataefamily in Folk Medicine in Iran: From Ethnobotany to Pharmacology. Iranian Journal of Pharmaceutical Research, 2, 63-79. https://www.researchgate.net/publication/26619246.
27. Benkhnigue O., Ben Akka F., Salhi S., Fadli M., Douira A., Zidane L.2014. Catalog of Medicinal Plants Used in the Treatment of Diabetes in the Al Haouz-Rhamna Region (Morocco) J. Anim. Plant. Sci., 23:3539–3568. https://m.elewa.org/JAPS/2014/23.1/4.pdf
28. Diafat, A., Araar, L., Derradji, Y., & Bouaziz, F. (2016). Acute and chronic toxicity of the methanolic extract of Ajuga iva in rodents. International Journal of Applied Research in Natural Products, 9, 9-16.
29. Jamila, F., & Mostafa, E. (2014). Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. Journal of ethnopharmacology, 154(1), 76–87. https://doi.org/10.1016/j.jep.2014.03.016
30. Bouyahya, A., El Omari, N., Elmenyiy, N., Guaouguaou, F. E., Balahbib, A., El-Shazly, M., & Chamkhi, I. (2020). Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Ajuga iva (L.,) schreb. Journal of ethnopharmacology, 258, 112875. https://doi.org/10.1016/j.jep.2020.112875.
31. Chouitah O., Meddah B., Aoues A., Sonnet P.2017. Essential Oil from the Leaves of Ajuga Iva: Chemical Composition and Antimicrobial Activity. J. Essent. Oil Bear. Plants. 20:873–877. DOI:10.1080/0972060X.2017.1337526
32. Mouheb S., Khali M., Rouibi A., Saidi F.(2018). Antimicrobial and Analgesic Activity of Aqueous Extract of Algerian Ajuga Iva (l.) Schreb (Lamiaceae) Rev. Agrobiol. 8:863–870 https://asjp.cerist.dz/en/article/119497.
33. Coll J., Tandrón Y.A. (2007). Neo-Clerodane Diterpenoids from Ajuga: Structural Elucidation and Biological Activity. Phytochem. Rev.7:25–49. doi: 10.1007/s11101-006-9023-3
34. Mehdi K, Rehman W, Abid O, Fazil S, Sajid M, Rab A, Farooq M, Haq S and Menaa F. (2020). Green Synthesis of Silver Nanoparticles using Ajuga parviflora Benth and Digera muricata Leaf extract: Their Characterization and Antimicrobial Activity. Rev. Chim., 71 (10), 50-57. https://doi.org/10.37358/RC.20.10.8349
35. Parveen S, Gupta V, and Kandwal A. 2022. Biosynthesis and evaluation of metallic silver nanoparticles (AgNPs) using Ajuga macrosperma (Ghonke ghas) leaf extract, along with anticancer activity. Society of Education, India. 13 (6),71-79
36. Andleeb S, Nazera S, Alomarb S.Y, Ahmad N, Khand I, Razaf A, Awang U.A and Rajah S.A. (2022). Wound healing and anti-inflammatory potential of Ajuga bracteosa conjugatedsilver nanoparticles in Balb/c mice bioRxiv. https://doi.org/10.1101/2022.09.21.508872;
37. Al Moudani, N., Laaraj, S., Ouahidi, I. (2023). Green synthesis of silver nanoparticles using leaves extract of Ajuga iva: characterizations, toxicity and photocatalytic activities.Chem. Pap. https://doi.org/10.1007/s11696-023-03177-5
38. Harborne, J.B. (1987). Metode Fitokimia Penuntun Cara Modern Menganalisis Tumbuhan. Penerbit ITB. Bandung.
39. Kuria, K. A., Chepkwony, H., Govaerts, C., Roets, E., Busson, R., De Witte, P., Zupko, I., Hoornaert, G., Quirynen, L., Maes, L., Janssens, L., Hoogmartens, J., & Laekeman, G. (2002). The antiplasmodial activity of isolates from Ajuga remota. Journal of natural products, 65(5), 789–793. https://doi.org/10.1021/np0104626
40. Pramila, D & Marimuthu, Kasi & Sathasivam, Kathiresan & Khoo, M & Senthilkumar, M & Kannan, Sathya. (2012). Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). J Med Plants Res. 6. 10.5897/JMPR11. DOI:10.5897/JMPR11
41. Peral, J., Domènech, X., & Trillas, M. (1995). Heterogeneous photochemistry: An easy experiment. J. Chem. Educ., 73(6), 565-566.
42. Kgatshe, Mogomotsi & Aremu, Oluwole & Katata-Seru, Lebogang & Gopane, Ramokone. (2019). Characterization and Antibacterial Activity of Biosynthesized Silver Nanoparticles Using the Ethanolic Extract of Pelargonium sidoides DC. Journal of Nanomaterials. 2019. 1-10. 10.1155/2019/3501234. DOI:10.1155/2019/3501234
43. Rao, M.L., & Savithramma, N. (2011). Biological Synthesis of Silver Nanoparticles using Svensonia Hyderabadensis Leaf Extract and Evaluation of their Antimicrobial Efficacy. J. Pharm. Sci. & Res. 3(3),1117-1121.
44. Yousaf, H., Mehmood, A., Ahmad, K. S., & Raffi, M. (2020). Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agent. Materials science & engineering. C, Materials for biological applications, 112, 110901. https://doi.org/10.1016/j.msec.2020.110901
45. Thiyagarajan S and Kanchana S. (2022). Green synthesis of silver nanoparticles using leaf extracts of Mentha arvensis Linn. and demonstration of their in vitro antibacterial activities. Braz. J. Pharm. Sci. ;58,19898.https://doi.org/10.1590/s2175-97902022219898
46. Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech, 4(2), 121–126. https://doi.org/10.1007/s13205-013-0130-8
47. Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application. Materials science & engineering. C, Materials for biological applications, 98, 250–255. https://doi.org/10.1016/j.msec.2018.12.090
48. Ben Salah, M., Aouadhi, C., & Khadhri, A. (2021). Green Roccella phycopsis Ach. mediated silver nanoparticles: synthesis, characterization, phenolic content, antioxidant, antibacterial and anti-acetylcholinesterase capacities. Bioprocess and biosystems engineering, 44(11), 2257–2268. https://doi.org/10.1007/s00449-021-02601-y
49. Vanaja, M., Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3, 217–223. https://doi.org/10.1007/s13204-012-0121-9
50. Willian N, Syukri S, Zulhadjri Z, Pardi H, Arief S. 2022. Marine plant mediated green synthesis of silver nanoparticles using mangrove Rhizophorastylosa: Effect of variable process and their antibacterial activity. F1000Res.10,1-18. https://doi.org/10.12688/f1000research.54661.2
51. Magudapathy, P. & Gangopadhyay, Parthasarathi & Panigrahi, Binaya & Nair, K. & Dhara, S.. (2001). Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B-condensed Matter - PHYSICA B. 299 (12). 142-146. Doi:10.1016/S0921-4526(00)00580-9
52. Mandal S, Phadtare S, and Sastry M.(2005). Interfacing biology with nanoparticles,” Current Applied Physics, 5. 118-127. https://doi.org/10.1016/j.cap.2004.06.006
53. Vanaja, M., Gnanajobitha, G., Paulkumar, K. et al. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J Nanostruct Chem 3, 17 (2013). https://doi.org/10.1186/2193-8865-3-17
54. Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 134, 310–315. https://doi.org/10.1016/j.saa.2014.06.046
55. Yan-Yu. R, Hui, W.Y, Tao and Chuang. W. (2016). Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Physics.Letters.A. 380, 3773-3777. https://doi.org/10.1016/j.physleta.2016.09.029
56. Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., & Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and surfaces. B, Biointerfaces, 68(1), 88–92. https://doi.org/10.1016/j.colsurfb.2008.09.022
57. Jena, S., Singh, R. K., Panigrahi, B., Suar, M., & Mandal, D. (2016). Photo-bioreduction of Ag+ ions towards the generation of multifunctional silver nanoparticles: Mechanistic perspective and therapeutic potential. Journal of photochemistry and photobiology. B, Biology, 164, 306–313. https://doi.org/10.1016/j.jphotobiol.2016.08.048
58. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 79(3), 594–598. https://doi.org/10.1016/j.saa.2011.03.040
59. Nayak, D., Pradhan, S., Ashe, S., Rauta, P. R., & Nayak, B. (2015). Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of colloid and interface science, 457, 329–338. https://doi.org/10.1016/j.jcis.2015.07.012
60. Thiruvengadam V and Bansod A.V.(2020). Characterization of Silver Nanoparticles Synthesized using Chemical Method and its Antibacterial Property. Biointerface Research in Applied Chemistr. 10, 6, 7257 – 7264. https://doi.org/10.33263/BRIAC106.72577264
61. Vu, X.H.; Duong, T.T.T.; Pham, T.T.H.; Trinh, D.K.; Nguyen, X.H.; Dang, V.-S. (2018). Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Advances in Natural Sciences: Nanoscience and Nanotechnology. 9. 025019. 10.1088/2043-6254/aac58f.
62. Murugan, N and Natarajan, D. (2018). Bionanomedicine for antimicrobial therapy - a case study from Glycosmis pentaphylla plant mediated silver nanoparticles for control of multidrug resistant bacteria. Lett. Appl. NanoBioScience. 8, 523-540. https://doi.org/10.33263/LIANBS734.523540
Copyright (c) 2025 Mariam Mohammed Sasi, Samira Omar Hribesh, Rabia Omar Eshkourfu, Rokaya Omar Amara

This work is licensed under a Creative Commons Attribution 4.0 International License.