Impact of Composting and Vermicomposting of Three Types of Animal Manure on the Dynamics of Macronutrients Nitrogen, Phosphorus and Potassium

  • Issa Ale Ndiaye Cheikh Anta Diop University (UCAD), Faculty of Science and Technology, Department of Animal Biology, PIA Laboratory (Integrated Production and Protection in Horticultural Agroecosystems), Senegal
  • Amadou Balde Cheikh Anta Diop University (UCAD), Faculty of Science and Technology, Department of Animal Biology, PIA Laboratory (Integrated Production and Protection in Horticultural Agroecosystems), Senegal
  • Oumar Seydi Cheikh Anta Diop University (UCAD), Faculty of Science and Technology, Department of Animal Biology, PIA Laboratory (Integrated Production and Protection in Horticultural Agroecosystems), Senegal
  • Etienne Tendeng Cheikh Anta Diop University (UCAD), Faculty of Science and Technology, Department of Animal Biology, PIA Laboratory (Integrated Production and Protection in Horticultural Agroecosystems), Senegal
  • Serigne Sylla Cheikh Anta Diop University (UCAD), Faculty of Science and Technology, Department of Animal Biology, PIA Laboratory (Integrated Production and Protection in Horticultural Agroecosystems), Senegal
  • Karamoko Diarra Cheikh Anta Diop University (UCAD), Faculty of Science and Technology, Department of Animal Biology, PIA Laboratory (Integrated Production and Protection in Horticultural Agroecosystems), Senegal
Keywords: Composting, vermicomposting, animal manure, fertilization, nutrients (N, P, K), organic recycling

Abstract

The management of animal manure remains a major environmental challenge, sparking growing interest in valorization methods such as composting and vermicomposting. However, the efficiency of the composting method largely depends on the type of organic substrate used. This study aims to evaluate the impact of composting methods on the final concentrations of nitrogen (N), phosphorus (P), and potassium (K) in three types of animal manure. Three types of animal manure (horse dung, cow dung, and poultry droppings) underwent a five-week pre-composting phase, followed by seven weeks of vermicomposting. Two earthworm species, Eudrilus eugeniae and Eisenia fetida, were used in the vermicomposting process. Soluble concentrations of N, P, and K were measured at the end of the composting and vermicomposting processes, and the impact of composting method on nutrient dynamics (N, P, K) in the soil was assessed both before transplanting and after harvesting a lettuce crop. During composting, cow dung and poultry droppings showed similar nitrogen levels (0.3 kg N/ha), which were significantly higher than those of horse manure (0.2 kg N/ha). Poultry droppings displayed the highest phosphorus (0.18 kg P/ha) and potassium (0.25 kg K/ha) concentrations, compared to cow dung (0.12 kg P/ha, 0.1 kg K/ha) and horse manure (0.1 kg P/ha, 0.1 kg K/ha). In vermicomposting, nutrient differences between manure types were less pronounced. Nitrogen levels were higher in compost than in vermicompost for poultry droppings (0.38 kg N/ha vs. 0.33 kg N/ha), while P and K levels remained similar between the two processes for cow dung. This study highlights the differential impact of composting and vermicomposting on the nutrient content of organic amendments. Composting appears to be more effective for poultry droppings, while vermicomposting yields comparable nutrient levels for horse and cow manure. These findings provide valuable insights for optimizing organic waste recycling to enhance soil fertility.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Addo, P., Oduro‐Kwarteng, S., Fosu Gyasi, S., & Awuah, E. (2022). Bioconversion of municipal organic solid waste into compost using Black Soldier Fly (Hermetia illucens). International Journal of Recycling of Organic Waste in Agriculture, 11(4).
2. Alipour, S. M., Fataei, E., Nasehi, F., & Imani, A. A. (2023). Vermicompost Quality and Earthworm Reproduction in Different Organic Waste Substrates. International Journal of Recycling of Organic Waste in Agriculture, 12(3). [DOI: 10.30486/ijrowa.2022.1944906.1371]
3. Angmo, D., Singh, J., Rashid, F., Sharma, P., Thakur, B., Singh, S., & Vig, A. P. (2024). Vermiremediation of organic wastes: vermicompost as a powerful plant growth promoter. Earthworm Technology in Organic Waste Management (pp. 59–77). Elsevier. [DOI: 10.1016/B978-0-443-16050-9.00014-1]
4. Aronsson, H., Nyström, S., Malmer, E., Kumblad, L., & Winqvist, C. (2022). Losses of phosphorus, potassium and nitrogen from horse manure left on the ground. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 72(1), 893–901. [DOI: 10.1080/09064710.2022.2121749]
5. Chastain, J. P. (2022). Composition of Equine Manure as Influenced by Stall Management. Agriculture, 12(6), 823. DOI: 10.3390/agriculture12060823.a
6. Dang, R., Cai, Y., Li, J., Kong, Y., Jiang, T., Chang, J., Yao, S., Yuan, J., Li, G., & Wang, G. (2024). Biochar reduces gaseous emissions during poultry manure composting: Evidence from the evolution of associated functional genes. Journal of Cleaner Production, 452, 142060. [DOI: 10.1016/j.jclepro.2024.142060]
7. Ducasse, V., Capowiez, Y., & Peigné, J. (2022). Vermicomposting of Municipal Solid Waste as a Possible Lever for the Development of Sustainable Agriculture: A Review. Agronomy for Sustainable Development, 42(5), 89. [DOI: 10.1007/s13593-022-00819-y]
8. Fernando, K. M. C., & Arunakumara, K. K. I. U. (2021). Sustainable Organic Waste Management and Nutrients Replenishment in the Soil by Vermicompost: A Review. AGRIEAST: Journal of Agricultural Sciences, 15(2). [DOI: 10.4038/agrieast.v15i2.105]
9. Fatah, A., Mamoun, A., Elbanna, S. M., Gamal, M. M., Alharbi, J. S., & Zalat, S. (2025). The Influence of Agricultural Residues and Horse Manure on Chemical and Biological Properties of Soil. Assiut University Journal of Multidisciplinary Scientific Research, 54(1), 181–208. [DOI: 10.21608/aunj.2024.334814.1103]
10. Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Cheng, H., et al. (2022). New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresource Technology, 344, 126236. [DOI: 10.1016/j.biortech.2021.126236]
11. Gashua, A. G., Sulaiman, Z., Yusoff, M. M., Samad, M. Y. A., Ramlan, M. F., & Salisu, M. A. (2022). Assessment of Fertilizer Quality in Horse Waste-Based Bokashi Fertilizer Formulations. Agronomy, 12(4), 937. [DOI: 10.3390/agronomy12040937]
12. Gonçalves, F., Presumido, P. H., Duarte De Souza, A. V., Silva, J. D. S., Anami, M. H., Prates, K. V. M. C., & Dal Bosco, T. C. (2021). Treatment of equine beds for composting and vermicomposting processes. International Journal of Environment and Waste Management, 28(2), 219–239. [DOI: 10.1504/IJEWM.2021.117194]
13. Hossen, M. S., Khan, M. R. I., Azad, M. A. K., Hashem, M. A., Bhuiyan, M. K. J., & Rahman, M. M. (2022). Effects of Moisture Content on the Quality of Vermicompost Produced from Cattle Manure. Bangladesh Journal of Animal Science, 51(2), 40–46. [DOI: 10.3329/bjas.v51i2.60493]
14. Kızılkaya, R., Yertayeva, Z., Kaldybayev, S., Murzabayev, B., Zhapparova, A., & Nurseitov, Z. (2021). Vermicomposting of Anaerobically Digested Sewage Sludge with Hazelnut Husk and Cow Manure by Earthworm Eisenia foetida. Eurasian Journal of Soil Science, 10(1), 38–50. [DOI: 10.18393/ejss.807762]
15. Lahbouki, S., Hashem, A., Kumar, A., Abd_Allah, E. F., & Meddich, A. (2024). Integration of Horse Manure Vermicompost Doses and Arbuscular Mycorrhizal Fungi to Improve Fruit Quality, and Soil Fertility in Tomato Field Facing Drought Stress. Plants, 13(11), 1449. [DOI: 10.3390/plants13111449]
16. Liegui, G. S., Cognet, S., Wafo Djumyom, G. V., Atabong, P. A., Fankem Noutadié, J. P., Chamedjeu, R. R., Temegne, C. N., & Noumsi Kengne, I. M. (2021). An effective organic waste recycling through vermicomposting technology for sustainable agriculture in tropics. International Journal of Recycling of Organic Waste in Agriculture, 10(3). [DOI: 10.30486/ijrowa.2021.1894997.1080]
17. Maharjan, K. K., Noppradit, P., & Techato, K. (2022). Suitability of Vermicomposting for Different Varieties of Organic Waste: A Systematic Literature Review (2012–2021). Organic Agriculture, 12(4), 581–602. [DOI: 10.1007/s13165-022-00413-2]
18. Ndiaye, I. A., Diatte, M., Labou, B., Baldé, A., Tendeng, E., Sylla, S. E., Seydi, O., Diop, P., Sène, E. O., & Diarra, K. (2022). Effectiveness of Vermicompost from Cow Manure on Agronomic Parameters of Tomato. International Journal of Biological and Chemical Sciences, 16(1), 300–306. [DOI: 10.4314/ijbcs.v16i1.25]
19. Ndiaye, I. A., Diatte, M., Tendeng, E., Sylla, S., Baldé, A., Seydi, O., Diop, P., Sène, S. O., Labou, B., & Diarra, K. (2022). Effective vermicomposts from three types of manure on the agronomic parameters of lettuce. Acta Horticulturae, 1348, 219–224. [DOI: 10.17660/ActaHortic.2022.1348.30]
20. Nanda, S., & Berruti, F. (2021). Municipal Solid Waste Management and Landfilling Technologies: A Review. Environmental Chemistry Letters, 19(2), 1433–1456.
21. Patra, R. K., Behera, D., Mohapatra, K. K., Sethi, D., Mandal, M., Patra, A. K., & Ravindran, B. (2022). Juxtaposing the quality of compost and vermicompost produced from organic wastes amended with cow dung. Environmental Research, 214, 114119. [DOI: 10.1016/j.envres.2022.114119]
22. Policastro, G., & Cesaro, A. (2022). Composting of organic solid waste of municipal origin: the role of research in enhancing its sustainability. International Journal of Environmental Research and Public Health, 20(1), 312.
23. Ravindran, B., Karmegam, N., Awasthi, M. K., Chang, S. W., Selvi, P. K., Balachandar, R., Chinnappan, S., Azelee, N. I. W., & Munuswamy-Ramanujam, G. (2022). Valorization of food waste and poultry manure through co-composting amending saw dust, biochar and mineral salts for value-added compost production. Bioresource Technology, 346, 126442. [DOI: 10.1016/j.biortech.2021.126442]
24. Syarifinnur, S., Nuraini, Y., Prasetya, B., & Handayanto, E. (2023). Comparing Compost and Vermicompost Produced from Market Organic Waste. International Journal of Recycling of Organic Waste in Agriculture, 12(3). [DOI: 10.30486/ijrowa.2022.1944251.1368]
25. Rizzo, P. F., Young, B. J., Pin Viso, N., Carbajal, J., Martínez, L. E., Riera, N. I., Bres, P. A., et al. (2022). Integral approach for the evaluation of poultry manure, compost, and digestate: Amendment characterization, mineralization, and effects on soil and intensive crops. Waste Management, 139, 124–135. [DOI: 10.1016/j.wasman.2021.12.017]
26. Yuan, Y., & Dickinson, N. (2022). Vermicomposting Food and Organic Wastes. In Food Waste Valorisation (pp. 253–283). WORLD SCIENTIFIC (EUROPE). [DOI: 10.1142/9781800612891_0010]
27. Zhou, X., Yu, Z., Deng, W., Deng, Z., Wang, Y., Zhuang, L., & Zhou, S. (2024). Hyperthermophilic composting coupled with vermicomposting stimulates transformation of organic matter by altering bacterial community. Science of The Total Environment, 954, 176676. [DOI: 10.1016/j.scitotenv.2024.176676]
Published
2025-04-23
How to Cite
Ndiaye, I. A., Balde, A., Seydi, O., Tendeng, E., Sylla, S., & Diarra, K. (2025). Impact of Composting and Vermicomposting of Three Types of Animal Manure on the Dynamics of Macronutrients Nitrogen, Phosphorus and Potassium. European Scientific Journal, ESJ, 40, 452. Retrieved from https://eujournal.org/index.php/esj/article/view/19398
Section
ESI Preprints