Understanding of stoichiometry by learners from Form Four to final year of general secondary education in Cameroon
Abstract
The aim of the present research is to determine the conceptions of learners from Form Four to upper sixth (13-19 years) of general secondary education in Cameroon about the concept of stoichiometry. A preliminary analysis of the didactic transposition of the concept of chemical reaction in the Form Four textbook, combined with an epistemological study of the concept of stoichiometry, enabled us to design an 8-item paper-and-pencil questionnaire. The questionnaire was administered to 239 learners from four to Upper Sixth students of five general secondary schools. The data collected were analyzed using Dehon's (2018) significance level model. The results show that many learners attribute irrelevant meanings to the concepts of the stoichiometry conceptual network. These meanings are mainly at the symbolic meaning level. In this article, we hope to provide teachers with starting points for better teaching of the integrative concept of stoichiometry. Thus, teachers should insist on the constant composition of molecules when teaching chemical reactions.
Downloads
Metrics
References
2. Barlet, R., & Plouin, D. (1994). L’équation-bilan en chimie. Un concept intégrateur source de difficultés persistantes. Aster: Recherches En Didactique Des Sciences Expérimentales, 18(1), 27–56.
3. BouJaoude, S., & Barakat, H. (2003). Students’ problem solving strategies in stoichiometry and their relationships to conceptual understanding and learning approaches. The Electronic Journal for Research in Science & Mathematics Education.
4. Cedran, D. P., da Costa Cedran, J., & Kiouranis, N. M. M. (2022). Panorama histórico da construção do campo conceitual da estequiometria. Revista Dynamis, 28(2), 152–170.
5. Çelikkiran, A. T. (2020). Examination of Secondary School Students’ Ability to Transform among Chemistry Representation Levels Related to Stoichiometry. International Journal of Progressive Education, 16(2), 42–55.
6. Dehon, J. (2018). L'équation chimique, un sujet d'étude pour diagnostiquer les difficultés d'apprentissage de la langue symbolique des chimistes dans l'enseignement secondaire belge, développement d'une séquence de leçons en s' appuyant sur un modèle des niveaux de signification. Namur: PUN.
7. Dehon, J., & Snauwaert, P. (2015). L’équation de réaction: une équation à plusieurs inconnues. Étude de productions d’élèves de 16-17 ans (grade 11) en Belgique francophone. RDST. Recherches En Didactique Des Sciences et Des Technologies, 12, 209–235.
8. Ducamp, C., & Rabier, A. (2005). L’avancement de réaction en classe de première scientifique. 4iemes Rencontres Scientifiques de l’ARDIST.
9. Fourcroy, A.-F.;Vauquelin, L.-N. (1797). De l’action spontannée de l’acide sulfurique concentré sur les substances végétales et animales. Annales de Chimie, 194–195.
10. Frazer, M. J., & Servant, D. (1986). Aspects of stoichiometry titration calculations. Education in Chemistry, 23(2), 54–56.
11. Gauchon, L. (2008). Comprendre les titrages-Représentations d’élèves de première et terminale scientifiques et effets de quelques variables. Université Paris-Diderot-Paris VII.
12. Gauchon, L., & Méheut, M. (2007). Learning about stoichiometry: from students’ preconceptions to the concept of limiting reactant. Chemistry Education Research and Practice, 8(4), 362–375.
13. ohnstone, A. H. (2000). Teaching of chemistry-logical or psychological? Chemistry Education Research and Practice, 1(1), 9–15.
14. Laugier, A., & Dumon, A. (2000). Travaux pratiques en chimie et representation de la reaction chimique par l’equation-bilan dans les registres macroscopique et microscopique: Une etude en classe de seconde (15-16 ans). Chemistry Education Research and Practice, 1(1), 61–75.
15. Nakhleh, M. B., & Mitchell, R. C. (1993). Concept learning versus problem solving: There is a difference. ACS Publications.
16. Nurrenbern, S. C., & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference? Journal of Chemical Education, 64(6), 508.
17. Stamovlasis, D., Tsaparlis, G., Kamilatos, C., Papaoikonomou, D., & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: Further evidence from a national chemistry examination. Chemistry Education Research and Practice, 6(2), 104–118.
18. Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet.” International Journal of Science Education, 33(2), 179–195.
19. Thouin, M. (2014). Réaliser une recherche en didactique. Éditions MultiMondes.
20. Zumdahl, S. S. (2002). Chemical Principles: Steven S. Zumdahl. Boston, MA: Houghton Mifflin.
Copyright (c) 2025 Jeremie Awomo Ateba, Josephine Nita Tematio Woukeng, Lawrence Ntam Nchia, Ayina Bouni

This work is licensed under a Creative Commons Attribution 4.0 International License.