Processus de minéralisation et impact de l’irrigation sur les ressources en eau souterraine au Sahel : Cas du périmètre irrigué de Birni N’Konni (Sud-Niger)
Abstract
Au Sahel, en raison de la forte variabilité interannuelle des eaux de surface, les ressources en eau souterraine représentent la ressource la plus fiable pour l’irrigation. Toutefois, une évaluation préalable de leurs disponibilité, qualité et dynamique pluriannuelle s’avère nécessaire afin de garantir l’efficacité et la durabilité des systèmes de productions. Une étude associant les données piézométriques et géochimiques a été réalisée à postériori dans le périmètre irrigué de Birni N’Konni (Sud Niger) afin d’évaluer l’impact de l’irrigation sur les ressources en eau souterraine. Les résultats montrent que les eaux sont principalement sulfatées calciques et magnésiennes (75%) et bicarbonatées calciques et magnésiennes (25%). Le diagramme de Gibbs, l’analyse en composante principale (ACP) et les relations ioniques montrent que la minéralisation des eaux est principalement contrôlée par le processus d’interaction eau-roche et dans une moindre mesure par l’évaporation de la nappe. L’utilisation de différents indicateurs conventionnels de la qualité de l’eau (EC, SAR, %Na, RSC, MAR et le IP) pour l’irrigation suggère que l’eau souterraine dans la zone est classée dans une large gamme entre excellente et impropre et présente, à court et à long terme, de forts risques de salinisation qui suggéreraient un recours aux cultures de plantes plus tolérantes au sel. Les données piézométriques montrent que le développement de l’irrigation et le faible taux de renouvellement ont entraîné une baisse généralisée du niveau de la nappe de plus de 4 m depuis les années 1960. Cette étude montre que le risque de salinisation à court ou à long terme demeure permanent mais reste moins préoccupant que la baisse du niveau de la nappe.
In the Sahel, due to the high inter-annual variability of surface water, groundwater is the most reliable resource for irrigation. However, a prior assessment of their availability, quality, and multi-year dynamics is necessary to guarantee the efficiency and sustainability of production systems. A study combining piezometric and geochemical data was carried out posteriori in the Birni N'Konni irrigated perimeter (southern Niger) to assess the impact of irrigation on groundwater resources. The results show that the water is mainly calcium-magnesium sulfate (75%) and calcium-magnesium bicarbonate (25%). The Gibbs diagram, principal component analysis (PCA), and ionic relationships show that water mineralization is mainly controlled by the water-rock interaction process, and to a lesser extent by groundwater evaporation. The use of various conventional water quality indicators (EC, SAR, %Na, RSC, MAR and the PI) for irrigation suggests that groundwater in the area is classified in a wide range between excellent and unsuitable and presents, in the short and long term, high risks of salinization, which would suggest the use of more salt-tolerant crops. Piezometric data show that the development of irrigation and the low renewal rate have led to a generalized drop in the water table of over 4 m since the 1960s. This study shows that the risk of salinization in the short or long term remains permanent, but is less of a concern than the drop in the water table.
Downloads
Metrics
References
2. Abdou Babaye, M. S., Sandao, I., Saley, M. B., Wagani, I., & Issoufou Ousmane, B. (2017). Comportement hydrogéochimique et contamination des eaux des aquifères fissurés du socle précambrien en milieu semi-aride (Sud-Ouest du Niger). International Journal of Biological and Chemical Sciences, 10(6), 2728. https://doi.org/10.4314/ijbcs.v10i6.26.
3. Acworth, R. I., Rau, G. C., Cuthbert, M. O., Leggett, K., & Andersen, M. S. (2021). Runoff and focused groundwater-recharge response to flooding rains in the arid zone of Australia. Hydrogeology Journal, 29(2), 737–764. https://doi.org/10.1007/s10040-020-02284-x.
4. Aher, K. R. (2012). Evaluation of Groundwater Quality and its Suitability for Drinking and Agriculture Use in Parts of Vaijapur, District Aurangabad, MS, India. Journal Of Chemical Sciences, 2(46), 25–31.
5. Ahmed, A. H., Rayaleh, W. E., Zghibi, A., & Ouddane, B. (2017). Assessment of chemical quality of groundwater in coastal volcano-sedimentary aquifer of Djibouti, Horn of Africa. Journal of African Earth Sciences, 131, 284–300. https://doi.org/10.1016/j.jafrearsci.2017.04.010.
6. ARID. (2004). Typologie des systèmes irrigués en Afrique de l’Ouest sahélienne. Projet Appia. Ouagadougou: ARID. http://www.arid_afrique.org/IMG/pdf/Typologie_des_systeme. 34.
7. Bian, J., Nie, S., Wang, R., Wan, H., & Liu, C. (2018). Hydrochemical characteristics and quality assessment of groundwater for irrigation use in central and eastern Songnen Plain, Northeast China. Environmental Monitoring and Assessment, 190(7). https://doi.org/10.1007/s10661-018-6774-4.
8. Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3–4), 294–313. https://doi.org/10.1016/j.jhydrol.2008.02.015.
9. Dhaoui, O., Agoubi, B., Antunes, I. M., Tlig, L., & Kharroubi, A. (2023). Groundwater quality for irrigation in an arid region—application of fuzzy logic techniques. Environmental Science and Pollution Research, 30(11), 29773–29789. https://doi.org/10.1007/s11356-022-24334-5.
10. Doneen, L. D., (1964). Water Quality for Agriculture, Department of Irrigation. University of California, Davis, 48p
11. Kendon, R. A. Stratton, A. Rachel, S. M. Tucker, H. B. John, R. Ségolène, P. S., & David, A, C. (2019). Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09776-9
12. Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–133. https://doi.org/10.1097/00010694-195002000-00004.
13. El Bilali, A., & Taleb, A. (2020). Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. Journal of the Saudi Society of Agricultural Sciences, 19(7), 439–451. https://doi.org/10.1016/j.jssas.2020.08.001
14. Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., & Leduc, C. (2009). Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resources Research, 45(7), 0–16. https://doi.org/10.1029/2007WR006785.
15. Favreau, G., Nazoumou, Y., Leblanc, M., Guéro, A., & Goni, I. B. (2011). Groundwater resources increase in the Iullemmeden Basin, West Africa. In Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations (pp. 113–128). CRC Press. https://doi.org/10.1201/b11611-12.
16. Fisher, R. S., & Mullican, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2), 4–16. https://doi.org/10.1007/s100400050102.
17. Hassane, A. B., Leduc, C., Favreau, G., Bekins, B. A., & Margueron, T. (2016). Impacts d’une grande ville sahélienne sur l’hydrodynamique et la qualité des eaux souterraines: exemple de Niamey (Niger). Hydrogeology Journal, 24(2), 407–423. https://doi.org/10.1007/s10040-015-1345-z.
18. Huang, L., Sun, Z., Zhou, A., Bi, J., & Liu, Y. (2022). Source and enrichment mechanism of fluoride in groundwater of the Hotan Oasis within the Tarim Basin, Northwestern China. Environmental Pollution, 300. https://doi.org/10.1016/j.envpol.2022.118962
19. ICA. (2016). Evaluation du potentiel des ressources en eau souterraine dans le périmètre hydro-agricole de Birni N’Konni. Rapport d’étude, 64p.
20. INS. (2012). Recensement Général de la population et de l’habitation, 2012. (NER-INS-RGPH--2012-V1.0). https://anado.ins.ne/index.php.
21. Issoufou Ousmane, B., Nazoumou, Y., & Favreau, G. (2022). Évaluation des eaux souterraines : application de la géochimie pour une étude de cas dans le périmètre irrigué de Djirataoua , Sud-Est Niger Résumé. Afrique SCIENCE, 2022, 20(February), 56–70p.
22. Issoufou Ousmane, B., Nazoumou, Y., Favreau, G., Abdou Babaye, M. S., Abdou Mahaman, R., Boucher, M., Sorensen, J. P. R., MacDonald, A. M., & Taylor, R. G. (2023). Groundwater quality and its implications for domestic and agricultural water supplies in a semi-arid river basin of Niger. Environmental Earth Sciences, 82(13). https://doi.org/10.1007/s12665-023-11016-9.
23. Labrecque, G., Chesnaux, R., & Boucher, M. A. (2020). Water-table fluctuation method for assessing aquifer recharge: application to Canadian aquifers and comparison with other methods. Hydrogeology Journal, 28(2), 521–533. https://doi.org/10.1007/s10040-019-02073-1.
24. Lapworth, D. J., Krishan, G., MacDonald, A. M., & Rao, M. S. (2017). Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Science of the Total Environment, 599–600, 1433–1444. https://doi.org/10.1016/j.scitotenv.2017.04.223.
25. Leblanc, M. J., Favreau, G., Massuel, S., Tweed, S. O., Loireau, M., & Cappelaere, B. (2008). Land clearance and hydrological change in the Sahel: SW Niger. Global and Planetary Change, 61(3–4), 135–150. https://doi.org/10.1016/j.gloplacha.2007.08.011.
26. Li, P., He, X., Li, Y., & Xiang, G. (2019). Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau: A Case Study of Tongchuan, Northwest China. Exposure and Health, 11(2), 95–107. https://doi.org/10.1007/s12403-018-0278-x.
27. Lindle, J., Villholth, K. G., Ebrahim, G. Y., Sorensen, J. P. R., Taylor, R. G., & Jensen, K. H. (2023). Groundwater recharge influenced by ephemeral river flow and land use in the semiarid Limpopo Province of South Africa. Hydrogeology Journal, 31(8), 2291–2306. https://doi.org/10.1007/s10040-023-02682-x.
28. Mar, S. S., & Okazaki, M. (2012). Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchemical Journal, 104, 17–21. https://doi.org/10.1016/j.microc.2012.03.020.
29. Nazoumou, Y., Favreau, G., Adamou, M. M., & Maïnassara, I. (2016). La petite irrigation par les eaux souterraines, une solution durable contre la pauvreté et les crises alimentaires au Niger ? Cahiers Agricultures, 25(1). https://doi.org/10.1051/cagri/2016005.
30. Nordstrom, D. K. (2022). Fluoride in thermal and non-thermal groundwater: Insights from geochemical modeling. Science of the Total Environment, 824. https://doi.org/10.1016/j.scitotenv.2022.153606.
31. Nouhou Chaweye Y., M., Boucher Y., Nazoumou G., Favreau R., Abdou Mahaman B., Issoufou. Ousmane., A., & Legchencko, A. (2023). Apport des méthodes RMP et TDEM á l’évaluation des ressources en eau disponibles pour l’irrigation en climat semi-aride – cas de Birni N’Konni. Actes Du 13ème Colloque De Géophysique Des Sols et Des Formations Superficielles Organisé Par Le Réseau GEOFCAN 7-8 Nov. 2023 Collège de l’école Doctorale, Strasbourg, France.
32. Nouhou Chaweye, Y., Nazoumou, Y., Favreau, G., Boucher, M., Issoufou Ousmane, B., Abdou Mahaman, R., & Legchenko, A. (2024). Optimization of groundwater resources management in a semi-arid catchment: Application of MRS and TDEM geophysical methods in southern Niger. The 9th Maghrebian Colloquium of Applied Geophysics (MCAG9): Applied Geophysics and Sustainable Development Challenges in Africa.’’ April 23rd to 25th, 2024 Kenitra, Morocco.
33. Olofinlade, W. S., Daramola, S. O., & Olabode, O. F. (2018). Hydrochemical and statistical modeling of groundwater quality in two constrasting geological terrains of southwestern Nigeria. Modeling Earth Systems and Environment, 4(4), 1405–1421. https://doi.org/10.1007/s40808-018-0486-1.
34. ORSTOM. (1964). Bilan sommaire des études d’hydrologie de surface effectuées sur le territoire de la République du Niger. Rapport d’étude, 111p.
35. Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC Version 3 — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In U.S. Geological Survey Techniques and Methods, book 6, chapter A43.
36. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025i006p00914.
37. Rao, N. S., Dinakar, A., Sravanthi, M., & Kumari, B. K. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28(24), 31941–31961. https://doi.org/10.1007/s11356-021-12404-z.
38. Sauvel, C. (1966). Hydrogéologie de la haute Maggia. Rapport BRGM 66 NIA, 96p.
39. Schoeller, H. (1965). Qualitative evaluation of groundwater resource. In: Methods and techniques of groundwater investigations and development. UNESCO Water Resources Series, pp 44–52.
40. Schoeller, H. (1967). Geochemistry of Groundwater International Guide for Research and Practice, vol. 15. UNESCO, pp. 118.
41. SOGETHA. (1964). Aménagement de l’Ader Doutchi-Maggia : Études pédologiques de détail. Bassins versants expérimentaux. Rapport d’étude, 3éme partie, 114p.
42. Su, H., Wang, J., & Liu, J. (2019). Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China. Environmental Pollution, 252, 1154–1162. https://doi.org/10.1016/j.envpol.2019.06.046.
43. Subba Rao, N., Surya Rao, P., Venktram Reddy, G., Nagamani, M., Vidyasagar, G., Satyanarayana, N. & Liu, V. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184(8), 5189–5214. https://doi.org/10.1007/s10661-011-2333-y.
44. Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., Macdonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., & Treidel, H. (2013). Groundwater and climate change. In Nature Climate Change (Vol. 3, Issue 4, pp. 322–329). https://doi.org/10.1038/nclimate1744.
45. Tirat (1964). Contribution à l’étude hydrogéologique du Continental terminal. Rapport BRGM.
46. USSL. (1954). Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci Soc Am J 18(3):348. https://doi.org/10.2136/ sssaj1954.03615995001800030032x.
47. Wekesa, S. S., Stigter, T. Y., Olang, L. O., Oloo, F., Fouchy, K., & McClain, M. E. (2020). Water Flow Behavior and Storage Potential of the Semi-Arid Ephemeral River System in the Mara Basin of Kenya. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00095.
48. Wilcox, L. V. (1955). Classification and Use of Irrigation Waters. US Department of Agriculture.Cire.969, Washington D.C., USA. (p. 19).
49. Zhao, X., Guo, H., Wang, Y., Wang, G., Wang, H., Zang, X., & Zhu, J. (2021). Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China plain. Environmental Earth Sciences, 80(4). https://doi.org/10.1007/s12665-021-09432-w.
Copyright (c) 2025 Yacouba Nouhou Chaweye, Boukari Issoufou Ousmane, Yahaya Nazoumou, Guillaume Favreau, Marie Boucher, Rabilou Abdou Mahaman

This work is licensed under a Creative Commons Attribution 4.0 International License.