Feeding on exudates and leaves of cassava cultivars with varying cyanogenic Potentials: Implications for the Biology of Typhlodromalus aripo, a key biocontrol agent of cassava green mite in Africa
Abstract
The predatory mite Typhlodromalus aripo, a key biological control agent of the cassava green mite in Africa, is known to feed on cassava exudates and, in the absence of prey, directly on cassava leaves. While cassava cultivars differ greatly in cyanogenic potential (CNP), the consequences of feeding on exudates and leaves from cultivars with different CNP levels for T. aripo biology remain unknown. We conducted laboratory experiments to evaluate several life history parameters of T. aripo on exudates and leaf discs of three cassava cultivars – TME1 (low CNP), TMS91934 (moderate CNP), and TMS82/00661 (high CNP). T. aripo completed its development on exudates of all three cultivars, being faster with higher survival on exudate of TMS82/00661 (6.8 days, 68.2%) compared with TME1 (7.9 days, 53.8%) and TMS91934 (8.2 days, 56.8%). None of the exudates supported oviposition, although adult female survivorship was highest on TMS82/00661. T. aripo was unable to develop beyond the deutonymph stage on the leaf discs of all three cassava cultivars. However, juvenile and adult longevity were greater on TME1 compared with the two other cultivars. Exudates were free of cyanogenic glycosides with similar amino acid concentrations; however, sugar content was twice as high in exudates of TMS8200661 compared with the other cultivars. These findings highlight the importance of cassava exudate quality for predator persistence and biological control success.
Downloads
References
2. Bakker, F.M., Klein, M. E. (1990). The significance of cassava exudates for predaceous mites. Symp. Biol. Hung. 39, 437-439.
3. Bakker, F. M., Klein, M. E. (1993). Host plant mediated coexistence of predatory mites: the role of extrafloral nectar and extrafoliar domatia on cassava. In Selecting Phytoseiid predators for biological control, with the emphasis on the significance of tri-trophic interactions, F.M. 4. Bakker (ed), pp. 33-63. PhD thesis University of Amsterdam, Amsterdam.
4. Bellotti, A. C., Hershey, C.H, Vargas, O. H. (1985). Recent advances in resistance to insect and mites pest of cassava (Manihot esculenta Crantz). In Cassava: Research Production and Utilization, Cassava Program, ed. J. H. Cock & Reyes, 441-470. UNDP, CIAT.
5. Bruce-Oliver, S. J., Hoy, M. A, Yaninek, J. S. (1996). Effects of some food sources associated with cassava in Africa on development, fecundity and longevity of Euseius fustis (Pritchard and Baker) (Acari: Phytoseiidae). Experimental and Applied Acarology, 20, 73-85. DOI: https://doi.org/10.1007/BF00051154
6. Byrne, D. H., Bellotti, A. C., Guerrero, J. M. (1983). The cassava mites. Tropical Pests Management, 29: 378-394. DOI: https://doi.org/10.1080/09670878309370833
7. Chant, D. A., Fleschner, C. A. (1960). Some observations on the ecology of phytoseiid mites (Acarina: Phytoseiidae) in California. Entomophga, 5, 131-139. DOI: https://doi.org/10.1007/BF02374401
8. Coll, M., Guershon, M. (2002). Omnivory in terrestrial arthropods: mixing plants and prey diets. Annual Review of Entomology, 47: 267-297. DOI: 10.1146/annurev.ento.47.091201.145209
9. Cooke, R. D., Coursey, D.G . (1981). Cassava: A major cyanide containing food crop. Pp 91-114. In: cyanide in Biology. Vennesland B., Conn, E. E., Knowles, C. J., Westley, J. and Wishing F. (eds.) Academic Press, London pp 548.
10. Cooke, R. D., De La Cruz, E. M. (1982). The changes in cyanide content of cassava (Manihot esculenta Crantz) tissues during plant development. Journal of the Science of the Food and Agriculture, 33, 269-275. DOI: https://doi.org/10.1002/jsfa.2740330312
11. El-Banhawy, E. M. (1975). Biology and feeding behavior of the predatory mite, Amblyseius brazilli (Mesostigmata: Phytoseiidae). Entomophaga, 20, 353-360. DOI: https://doi.org/10.1002/jsfa.2740330312
12. Ferragut, F., Garcia-Mari, F., Costa-Commelles, J., Laborda, R. (1987). Influence of food and temperature on development and oviposition of Euseius stipulatus and Typhlodromalus phialatus (Acari: Phytoseiidae). Experimental and Applied Acarology, 3, 317-329. DOI: https://doi.org/10.1007/BF01193168
13. Gnanvossou, D., Hanna, R., Yaninek, J. S., Toko, M. (2005). Comparative life history traits of three neotropical phytoseiid mites maintained on plant-based diets. Biological Control, 35, 32-39. DOI: https://doi.org/10.1016/j.biocontrol.2005.05.013
14. Gnanvossou, D., Yaninek, S., Hanna, R., Dicke, M. (2003). Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Experimental and Applied Acarology. 3,: 265-278. DOI; https://doi.org/10.1023/B:APPA.0000008469.57888.82
15. Grafton-Cardwell, E. E., Ouyang, Y. (1996). Influence of citrus leaf nutrition on survivorship, sex ratio and reproduction of Euseuis tularensis (Acari: Phytoseiidae). Environmental Entomology, 25 (5), 1020-1025.DOI: https://doi.org/10.1007/BF01193168
16. Hanna, R., Onzo, A. (2009). Within-plant migration of the predatory mite Typhlodromalus aripo from the apex to the leaves of cassava: response to day–night cycle, prey location and prey density. Journal of Insect behavior 22: 186-195. https://doi.org/10.1007/s10905-008-9164-x
17. Hansen, J. D., Hara, A. H., Chan, H. T., Tembrink, V. L. (1991). Efficacy of hydrogen cyanide fumigation as a treatment for pests of Hawaiian cut flowers and foliage after harvest. Journal of Economci Entomology, 84 (2), 532-536. DOI: https://doi.org/10.1093/jee/84.2.532
18. Herren, H. R. (1982). IITA’s role in integrated control of cassava mealybug (Penacoccus manihoti Mat-Fer) and green mite complex (Mononychellus tanajoa Bondar) in Africa. Pp 154-157. In: Okoli, O. O., Enyinnia, T. Igbokowe, M. C., Odurukwe, S. O., Okeke, J. E. and Okereke, H. E. (Editors). Proceedings of the International Workshop on Control of Cassava Mealybug and Cassava Green Spider Mite, October 12-16, 1981. National Root Crops Research Institute. Umudike, Nigeria. 194 pp. Umuahia, Nigeria, Guinea Printing Press.
19. Herren, H. R. (1989). The biological control program of IITA: From to reality. In: J.S. Yaninek and Herren (editors), Biological control: a sustainable solution to crop pest problems in Africa. Ibadan: IITA, pp. 18-30.
20. Herren, H. R., Bennett, F. D. (1984). Cassava pests, their spread and control. In: D.L. Hawksworth (Editor), Advancing Agricultural Production in Africa. Proceedings of CAB’s First Scientific Conference, 12-18 February 1984, Arusha, Tanzania. Slough, Uk Cmmonw. Agric. Bureau: 110-114.
21. Houck, L. G., Jenner, J. F., Moreno, P. S., Mackey, B. E. (1989. Permeability of polymer film wraps for citrus fruit fumigated with Hydrogen cyanide to control California red scale. Journal of American Society of Horticultural Science, 114 (2), 287-292. DOI: 10.21273/JASHS.114.2.287
22. James, D. G. (1989). Influence of diet on development, survival and oviposition of Amblyseius victoriensis (Acari: Phytoseiidae). Experimental and Applied Acarology, 6, 1-10. DOI: https://doi.org/10.1007/BF01193228
23. IITA (1990) IITA-Plant Health Management Division, Annual Report. 80 pp.
24. Klein, M. E. (1990). Is cassava exudate, a factor in the persistence of Typhlodromalus limonicus (Greman & McGregor) in the field? MSc. Thesis. University of Amsterdan, Amsterdan, the Netherland, 34 pp.
25. Magalhães, S., Bakker, F. M. (2002). Plant feeding by a predatory mite inhabiting cassava. Experimental and Applied Acarology, 27, 27-37. DOI; https://doi.org/10.1023/A:1021508620436
26. Megevand, B., Klay, A., Gnanvossou, D., Paraiso, G. (1993). Maintenance and mass rearing of phytoseiid predators of the cassava green mite. Experimental and Applied Acarology, 17, 115-128. DOI: https://doi.org/10.1007/BF00156948
27. McMutry, J .A., de Moraes, G. J., Famah Sourassou, N. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4): 297–320. DOI: https://doi.org/10.11158/saa.18.4.1
28. McMurtry, J. A., Scriven, G. T. (1964). Studies on the feeding, reproduction and development of Amblyseius hibsci (Acarina: Phytoseiidae) on various food substances. Annals of Entomological Society of America, 57, 649-657. DOI; https://doi.org/10.1111/j.1439-0418.1979.tb02523.x
29. McMurtry, J. A., Scriven, G. T. (1966). Effects of artificial foods on reproduction and development of four species of phytoseiid mites. Annals of Entomological Society of America, 59, 267-269. DOI: https://doi.org/10.1093/aesa/59.2.267
30. Momen, F. M., El-Saway, S. A. (1993). Biology and feeding behavior of predatory mite Amblyseius swirskii (Acarina: Phytoseiidae). Acaralogia, 34, 199-204. DOI: DOI:10.1556/APhyt.46.2011.1.12
31. Nomikou, M., Sabelis, M.W., Arne Janssen, A. (2010). Pollen subsidies promote whitefly control through the numerical response of predatory mites. BioControl, 55, 253–260, DOI: https://doi.org/10.1007/s10526-009-9233-x
32. Oduor, G. I. (1988). The effect of cassava (Manihot esculenta Crantz) leaf exudate on the life history and behavior of the predacious mites Typhlodrimalus limonicus (German & Gregor) (Acari: Phytoseiidae). M. Sc Thesis. Imperial College of Science and Technology. Silvood Park, Ascot Brekshire. UK. 29 pp.
33. Onzo, A., Sabelis, M. W., Hanna, R. (2003). Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa. Experimental and Applied Acarology, 31(3-4,) 225-231. DOI: https://doi.org/10.1023/b:appa.0000010380.44408.05
34. Onzo, A., Saeblis, M. W., Hanna, R. (2014). Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa. Experimental and Applied Acarology, 62, 293-311. DOI: https://doi.org/10.1007/s10493-013-9742-2
35. Onzo, A., Hanna, R., Sabelis, M. W. (2012). The predatory mite Typhlodromalus aripo prefers green-mite induced plant odours from pubescent cassava varieties. Experimental and Applied Acarology, 58, 359–370. DOI: https://doi.org/10.1007/s10493-012-9595-0
36. Onzo, A., Hanna, R., Toko, M. (2013). Mix-planting pubescent and glabrous cassava affects abundance of Typhlodromalus aripo and its prey mite Mononychellustanajoa. Journal of Applied Entomology, 138, 297-306. DOI: https://doi.org/10.1111/jen.12084
37. Overmeer, W. P. J. (1985). Alternative prey and other food sources. In: Spider Mites- Their Biology, Natural Enemies and Control, W. Helle and M.W. Sabelis (eds), pp. 131-139. Elsevier, Amsterdam.
38. Porres, M. A., McMurtry, J. A., March, R. B. (1975). Investigations of leaf sap feeding by three species of phytoseiid mites by labeling with radioactive phosphoric acid. Annals of Entomological Society of America, 68, 871-872. DOI: https://doi.org/10.1093/aesa/68.5.871
39. Price, P. W., Boutton, C.E., Gross, P., McPheron, B. A., Thompson, J. N., Weis, A. E. (980). Interactions among three trophic levels: influence of plants on interaction between insects herbivore and natural enemies. Annu. Rev. Ecol. Syst., 11: 41-65. DOI; https://doi.org/10.1146/annurev.es.11.110180.000353
40. Samaras, K, Pappas, M. L., Pekas, A. (2022). Benefits of a balanced diet? Mixing prey with pollen is advantageous for the .phytoseiid predator Amblydromalus limonicus. Biological control, 155, 104531.
41. Toko, M., O'Neil, R. J., Yaninek, J. S. (1994). Effect of cassava exudate and prey densities on the survival and reproduction of Typhlodromalus limonicus (Acari: Phytoseiidae) a predator of cassava green mite Mononychellus tanajoa (Acari: Tetranychidae). Experimental and Applied Acarology, 18, 221-231. DOI: 10.1007/BF00114169
42. Van Rijn, C .P. J., Tanigoshi, L. (1999). The contribution of the extrafloral nectar to survival and reproduction of the predator mite Iphisieius degenerans on Ricinus comminus. Experimental and Applied Acarology, 23, 281-296. DOI: https://doi.org/10.1023/A:1006240126971
43. Yaninek, S., Hanna, R. (2003). Cassava green mite in Africa - a unique example of successful classical of mite pest on continental scale. In P. Neuenschwander, C. Borgemeister, and J. Langewald, Biological control in IPM in Africa. 1st ed. p. 61-75. Wallingford: CABI Publishing
Copyright (c) 2025 Nazer Famah Sourassou, Komi Agboka, Koffi Negloh, Rachid Hanna, Atti Tchabi

This work is licensed under a Creative Commons Attribution 4.0 International License.