Effects of Two Palms (Borassus aethiopum Mart and Hyphaene thebaica (L.) Mart) on Soil Physicochemical Properties in the Agroforestry Parklands of Gaya, Niger
Abstract
This study aims to determine the contribution of B. aethiopum and H. thebaica for improving soil fertility in south-west Niger. For this purpose, a complete randomized experimental design with three replicates was used. A total of 45 composite samples of 100 g of soil (36 below canopy and 9 outside) were collected between 0 and 20 cm depth. The data were used to determine organic matter, total carbon, total nitrogen, total sulfur, macronutrients (Mg, Ca, Na and K), phosphorus and micronutrients (Fe, Zn, Cu and Mn) contents, pH, hygroscopic moisture, electrical conductivity and texture. The results revealed that levels of OM, C, N, Mn, Mg, Zn, HM, P, and Fe are higher beneath the canopies of both palm species, with a more pronounced enrichment observed under B. aethiopum. Except for phosphorus (P), variations in nutrient levels were largely explained by the soil’s organic matter, with which they showed strong and significant correlations. The study demonstrated that B. aethiopum and H. thebaica significantly enhance soil fertility and contribute to its structural stability. In light of these findings, it is crucial to develop policies that promote the rational management of forest resources as a sustainable strategy for preserving agricultural soil fertility.
Downloads
PlumX Statistics
References
2. Abdourahamane, T. D. B., Nomaou, D. L., Yadji, G., Lamar, R., Bationo-Babou, A., Djamen, P., Adamou Didier, T., Nassirou, A. M., & Karimou, A. J. M. (2015b). Variations texturales et chimiques autour des touffes d’Hyphaene thebaica (Mart) des sols dans la région de Maradi (Niger), Algerian Journal of Arid Environment, 5(1): 40-55, ISSN 2170-1318, http://doi.org/10.12816/0045906.
3. Alvarez, F., Casanoves, F., & Suarez, J. C. (2021). Influence of scattered trees in grazing areas on soil properties in the Piedmont region of the Colombian Amazon. PLOS ONE, 16 (12):e0261612, https://doi.org/10.1371/journal.pone.0261612
4. Breman, H., & Kessler, J. J. (1995). Woody plants in agro-ecosystems of semi-arid regions with emphasis on the sahelian countries, Advanced series in agricultural sciences, vol 23, Paris, Springer-Verlag, Berlin, 340 p.
5. Camara, M. B. (2018). Caractérisation agroécologique et socio-économique des parcs agroforestiers a Elaeis guineensis jacq et Faidherbia albida (del.) Chev et leurs influences sur la productivité du riz pluvial en basse Casamance (Sénégal). Thèse de Doctorat, Université Assane Seck de Ziguinchor, nº d’ordre :13, 152p.
6. Camille, H. (2021). Impact du linéaire sous arboré sur les organismes et la fertilité du sol en système agroforestier tempéré, Thèse de doctorat : Ecologie fonctionnelle : Montpellier, SupAgro, Français, NNT: 2021AGRO0006, tel-04031964, http://viaf.org/ viaf/162167863686022740224.
7. CILSS. (2016). Landscapes of West Africa –A Window on a Changing World, U.S. Geological Survey EROS, 47914252nd St, Garretson, SD 57030, United States, https://eros.usgs.gov/westafrica
8. Dabin, B., & Segalen, P. (1977). Chapitre 2, le sol, sa définition, ses constituants, BDPA et ORSTOM. n°6, OVATY-Paris, 17p.
9. Dagnelie, P. (1988). Quelques notions d’expérimentation agronomique utilisées en recherche biopharmaceutique. Revue de statistique appliquée, tome 36-2-23-0, p23-36
10. Dollinger, J., & Jose, S. (2018). Agroforestry for soil health. Agroforest Syst 92, 213-219, https://doi.org/10.1007/s10457-018-0223-9
11. FAO. (2015). Évaluation des ressources forestières mondiales, Répertoire de données de FRA. (Rapport national du Niger), 101 p.
12. Feller, C. (1995). La matière organique du sol : un indicateur de la fertilité. Application aux zones sahélienne et soudanienne (Afrique de l’Ouest). Agriculture et développement n° 8 - Décembre 1995, 35-41.
13. Gonçalves, T. R., Vogado, R. F., Silva, R. D., Pompeu, R. C. F. F., Oda-Souza, M., & Souza, H. A. (2023). Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region. Revista Brasilieria de Ciencia Solo, 47, https://doi.org/10.36783/18069657rbcs20220124
14. Hoosbeek, M. R., Remme, R. P., & Rusch, G. M. (2018). Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor Syst. https://doi.org/10.1007/s10457-016-0049-2
15. Hou, L., Zhang, Y., Li, Z., Shao, G., Song, L., & Sun, Q. (2021). Comparison of soil properties, understory vegetation species diversities and soil microbial diversities between Chinese Fir Plantation and Close-to-Natural Forest. Forests, 12(5), 632, http://doi.org/10.3390/f12050632.
16. Kater, L. J. M., Kante, S., & Budelman, A. (1992). Karité (Vitellaria paradoxa) and Néré (Parkia biglobosa) associated with crops in South Mali. Agroforestry Systems, 18(2), 89-105.
17. Kouyaté, A. M., Van Damme, P., Sarah Goyens De Neve S., & Hofman, G. (2007). Evaluation de la fertilité des sols à Detarium microcarpum Guill. & Perr. Tropicultura, 25(2), 65-69.
18. Lindsay, W. L., & Norvell, W. A. (1978). Development of a Dtpa soil test for zinc, iron, manganese, and copper, Soil Science Society of America Journal. 42, 421-428, http://doi.org/10.2136/sssaj1978.0361599500420003.
19. Liu, X., Tan, N., Zhou, G., Zhang, D., Zhang, Q., Liu, S., Chu, G., & Liu, J. (2021). Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant and Soil, 464(1-2), 257–272, http://doi.org/ 10.1007/s11104-021-04940-x.
20. Ma, T., Deng, X., Chen, L., & Xiang, W. (2020). The soil properties and their effects on plant diversity in different degrees of rocky desertification. The Science of The Total Environment, 736: 139667, http://doi.org/10.1016/j.scitotenv.2020.139667.
21. Moral, F. J., & Rebollo, F. J. (2017). Characterization of soil fertility using the Rasch model. Journal of Soil Science and Plant Nutrition, 17 (2), 486-498, http://doi.org/10.4067/S0718-95162017005000035.
22. Moussa, H. (1997). Germination du palmier doum (Hyphaene thebaica Mart L.) et analyse de son interaction avec le mil (Pennisetum glaucum L. ) en zone semi-aride du Niger. Thèse de Doctorat, Université Laval, Quebec, National library of Canada, 201p. 0-612-25442-9.
23. Mureva, A., & Ward, D. (2017). Soil microbial biomass and functional diversity in shrub-encroached grasslands along a precipitation gradient. Pedobiologia, 63, 37–45, http://doi.org/10.1016/j.pedobi.2017.06.006.
24. Niger. (2012). Plan Forestier National (PFN - Niger 2012-2021), FAO, Bureau d’Etudes en Ingénierie pour l’Environnement. Ministère de l’Hydraulique et de l’Environnement, Niamey, Niger, Rapport de synthèse, 98p
25. Niger. (2020). Stratégie et Plan National d’Adaptation face aux changements climatiques dans le secteur Agricole, SPN2A 2020-2035, Version finale, 85p.
26. Olsen, S. R., Cole, C. V., Watanare, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, US Department of Agriculture, cicular N°939, US Government Printing office, Washington DC, 8P.
27. Potts, M., Gidi, V., Campbell, M., & Zureick, S. (2011). Niger: Too Little, Too Late, International Perspectives on Sexual and Reproductive Health, 37(2), 95-101, http://doi. org/10.1363/3709511.
28. Ramos, H. M. N., Vasconcelos, S. S., Kato, O. R., & Castellani, D. C. (2017). Above- and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agroforestry Systems, 92(2):221–237, https://doi.org/10. 1007/s10457-017-0131-4
29. Rene, N. K., Guillaume, K. A., Boue, V. B. B. N., & Sidiky, B. (2021). Impact of agroforestry systems on mineral fertility of soils under cocoa trees in Toumodi, Côte d'Ivoire. International Journal of Plant & Soil Science, 33(17): 10-22, 70773, ISSN: 2320-7035, http://doi.org/10.9734/IJPSS/2021/v33i1730545
30. Salazar, P. C., Navarro-Cerrillo, R. M., Grados, N., Cruz, G., Barrón, V., & Villar, R. (2019). Tree size and leaf traits determine the fertility island effect in Prosopis pallida dryland forest in Northern Peru, Plant and Soil, 437(1-2), https://doi.org/10.1007/s11104-019-03965-7
31. Samba, S. A. N. (1997). Influence de Cordyla pinnata sur la fertilité d'un sol ferrugineux tropical et sur le mil et l'arachide dans un système agroforestier traditionnel au Sénégal, thèse de doctorat à l’Université Laval, 0-612-25455-0, 180p
32. SONED-Afrique/MSA. (2020). Plan de développement communal (PDC) 2021-2025 de la Commune rurale de Tounouga, version provisoire, révision 01, 112p.
33. SONED-Afrique/MSA. (2023). Plan de développement communal 2022-2026 de la commune rurale de Bengou, version finale,116p.
34. Soro, D., Bakayoko, S., Dao, D., Bi, T. T., Angui, P., & Girardin, O. (2011). Diagnostic de fertilité du sol au centre-nord de la Côte d’Ivoire, Agronomie Africaine, 23 (3) : 205 - 215
35. Soumaré, A. (1996). Utilisation des éléments nutritifs par deux arbres du Sahel, Acacia albida et Sclerocarya birrea, Rapports PSS, 7-31.
36. Stone. D. (1993). Environmental Synopsis: Niger, The World Conservation Union, 44p.
37. Vairelles D, Lhomme J, Gelhaye D (1981). Modifications des caractéristiques Physico-chimiques d’un sol brun acide des Ardennes primaires par la monoculture d’Epicéa commun. Ann. Sci. foret, 38 (2), 237-258.
38. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modificat of the chromic acid titration method soil science, 37, 29-38.
39. Wu, H., Xiang, W., Ouyang, S., Forrester, D. I., Zhou, B., Chen, L., Ge, T., Lei, P., Chen, L., Zeng, Y. et al. (2019). Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Functional Ecology, 33(8): 1549–1560, http://doi.org/10.1111/1365-2435.13355.
40. Wu, S. H., Huang, B. H., Huang, C. L., Li, G., & Liao, P. C. (2018). The aboveground vegetation type and underground soil property mediate the divergence of soil microbiomes and the biological interactions. Microbial Ecology, 75(2), 434–446, http://doi.org/10.1007/s00248-017-1050-7.
41. Zhao, Y., Zhao, M., Qi, L., Zhao, C., Zhang, W., Zhang, Y., Wen, W., & Yuan, J. (2022). Coupled relationship between soil physicochemical properties and plant diversity in the process of vegetation restoration. Forests, 13(5): 648, http://doi.org/10.3390/ f13050648
42. Zoubeirou, A. M., Abdou, M. M., Kadrir, A., Ambouta, J. M. K., & Dan Lamso, N. (2014). Effet de l’arbre Acacia senegalensis sur la fertilité des sols de gommeraies au Niger. International Journal of Biological and Chemical Sciences, 7(6):2328-2337, ISSN 1997-342X, http://dx.doi.org/10.4314/ijbcs.v7i6.13
Copyright (c) 2025 Abdoulaye Garba Seyni, Vidal Barron, Hamissou Amadou Mounkaïla, Antonio Navajas, Rafael Villar

This work is licensed under a Creative Commons Attribution 4.0 International License.


