Assessment of Knowledge and Implementation of AgroEnvironmental Techniques by Farmers in Kanyameshi and Mimbulu Villages, peri-Urban Area of Lubumbashi, HautKatanga Democratic Republic of Congo

  • Laurent Kabala Kazadi Department of Agricultural Economics Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • Robert Monga Ilunga Dikoshi Department of Ecosystem and Biodiversity Management Agro-Meteorology and Land Evaluation Research Unit Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • Boniface Mbinga Lokoto Department of Ecosystem and Biodiversity Management Ecology and Landscape Restoration Research Unit, Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • Desire Numbi Mujike Department of Ecosystem and Biodiversity Management Laboratory of Silviculture and Agroforestry Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • Maurice Kesonga Nsele Department of Agricultural Economics Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • John Tshomba Kalumbu Department of Agricultural Economics Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • Jules Nkulu Mwine Fyama Department of Agricultural Economics Faculty of Agronomic Sciences, University of Lubumbashi, DRC
  • Moïse Kalambaie Bimn Mukanya Department of Agricultural Economics National Pedagogical University, Kinshasa, DRC
Keywords: Agro-Environmental techniques, Family farmers, Lubumbashi, Haut-Katanga, DR Congo

Abstract

Agriculture plays a central role in socioeconomic development, especially in the Democratic Republic of Congo, where it employs about 70% of the population. However, dominant agricultural practices negatively impact the environment, threatening biodiversity and ecosystems. This study aims to promote resilient family farming in the peri-urban area of Lubumbashi, Haut-Katanga. It evaluates farmers' knowledge and implementation of agro-environmental techniques to mitigate climate change effects. Based on surveys and direct observations of 150 farmers in Kanyameshi and Mimbulu villages, results show that crop association, rotation and manure pits are the most practiced techniques (38%), while agroforestry and biological control are nearly absent. Knowledge of these techniques is closely linked to their perceived impact on climate, environment and agricultural productivity. Although 47% of farmers believe these practices moderately improve farm performance and profitability. The overall awareness remains low. This highlights the need to intensify agro-environmental practices to strengthen family farming resilience.

Downloads

Download data is not yet available.

References

1. Ali, D. A., Deininger, K., & Goldstein, M. (2016). Environmental and gender impacts of land tenure regularization in Africa: Pilot evidence from Rwanda. Journal of Development Economics, 110, 262–275. https://doi.org/10.1016/j.jdeveco.2013.12.009
2. Altieri, M. A. (2002). Agroecology: The science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93, 1–24.
3. Altieri, M. A. (2009). Agroecology, small farms, and food sovereignty. Monthly Review, 61(3), 102–113.
4. Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32(1), 1–13.
5. Altieri, M. A. (2018). Agroecology: The science of sustainable agriculture (3rd ed.). CRC Press.
6. Altieri, M. A., & Nicholls, C. I. (2017). Agroecology: A transdisciplinary, participatory and action-oriented approach. CRC Press.
7. Altieri, M. A., & Nicholls, C. I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140(1), 33–45. https://doi.org/10.1007/s10584-013-0989-4
8. Altieri, M. A., & Nicholls, C. I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140(1), 33–45. https://doi.org/10.1007/s10584-013-0988-0
9. Altieri, M. A., & Nicholls, C. I. (2020). Agroecology: A transdisciplinary, participatory and action-oriented approach. Agronomy, 10(2), 41. https://doi.org/10.3390/agronomy10020041
10. Assogba, P. N., Kokoye, S., Yegbemey, R. N., Djenontin, J. A., Tassou, T., & Yabi, J. A. (2017). Determinants of credit access by smallholder farmers in North-East Benin. Journal of Development and Agricultural Economics, 9(8), 210–217. https://doi.org/10.5897/AE2017.0614
11. Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2018). Proxy global assessment of land degradation. Soil Use and Management, 34(1), 16–33.
12. Barrière, V., Lecompte, F., Nicot, P. C., Maisonneuve, B., Tchamitchian, M., & Lescourret, F. (2014). Lettuce cropping with less pesticides: A review. Agronomy for Sustainable Development, 34, 175–198.
13. Brondízio, E. (2019). The global assessment report on biodiversity and ecosystem services. IPBES.
14. Brondízio, E. S., Settele, J., Díaz, S., & Ngo, H. T. (Eds.). (2019). Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES. https://doi.org/10.5281/zenodo.3831673
15. Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2010). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 137(1–2), 1–13.
16. Camirand, R., & Gingras, J. (2011). Agriculture et environnement. Éditions MultiMondes.
17. Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96(11), 5952–5959.
18. Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 11(2), 343–355.
19. D’Souza, G., Cyphers, D., & Phipps, T. (1993). Factors affecting the adoption of sustainable agricultural practices. Agricultural and Resource Economics Review, 22(2), 159–165. https://doi.org/10.1017/S1068280500003161
20. Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M. J. W., & Witt, A. (2017). Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196–201.
21. Defontaines, J.-P. (1985). Étude de l’activité agricole et analyse du paysage. L’Espace Géographique, 1, 37–47.
22. Defontaines, J. P. (1985). Paysages et agricultures. Études Rurales, 97, 47–62.
23. Deininger, K. (2017). Land governance and policy for sustainable and inclusive rural transformation. World Development, 99, 1–10.
24. Deininger, K., & Feder, G. (2001). Land institutions and land markets. In B. L. Gardner & G. C. Rausser (Eds.), Handbook of agricultural economics (Vol. 1, pp. 288–331). Elsevier. https://doi.org/10.1016/S1574-0072(01)10007-5
25. Doss, C. R., & Morris, M. L. (2001). How does gender affect the adoption of agricultural innovations? Agricultural Economics, 25(1), 27–39. https://doi.org/10.1016/S0169-5150(00)00096-7
26. Doss, C., Meinzen-Dick, R., Quisumbing, A., & Theis, S. (2018). Women in agriculture: Four myths. Global Food Security, 16, 69–74. https://doi.org/10.1016/j.gfs.2017.10.001
27. Doucet, V. (2010). Analyse des pratiques agricoles permettant de réduire les impacts environnementaux et d'améliorer le bilan environnemental. Québec : Vaclav Vojtech.
28. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14.
29. Early, R., González-Moreno, P., Murphy, S. T., & Day, R. (2018). Forecasting the global extent of invasion of the fall armyworm, Spodoptera frugiperda. NeoBiota, 40, 25–50.
30. Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a science, a movement and a practice: A review. Agronomy for Sustainable Development, 29, 503–515.
31. World Bank. (2024). Creating a world free of poverty on a livable planet. https://www.banquemondiale.org/ext/fr/who-we-are.
32. El-Wakeil, N. E. (2013). Botanical pesticides and their mode of action. Gesunde Pflanzen, 65(4), 125–149.
33. Environnement et Changement Climatique Canada. (n.d.). Oxyde nitreux (N₂O). In La liste des substances toxiques gérées sous la LCPE 1999 (Annexe 1). https://www.canada.ca/fr/environnement-changement-climatique.html
34. Fageria, N. K., & Baligar, V. C. (2005). Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy, 88, 97–185.
35. FAO. (n.d.-b). De l'accaparement des terres à la stratégie du gagnant-gagnant. In Economic and Social Perspectives – Policy Brief. Organisation des Nations Unies pour l’Agriculture et l’Alimentation.
36. FAO. (2019). The state of food and agriculture. Food and Agriculture Organization of the United Nations.
37. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., ... & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570–574.
38. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., ... & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.
39. Garnett, T. (2014). Three perspectives on sustainable food security: Efficiency, demand restraint, food system transformation. Environmental Science & Policy, 38, 1–12.
40. Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., ... & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341(6141), 33–34.
41. Gogo, E. O., Saidi, M., Itulya, F. M., Martin, T., & Ngouajio, M. (2012). Microclimate modification using eco-friendly nets for high-quality tomato transplant production by small-scale farmers in East Africa. HortTechnology, 22(3), 292–298.
42. Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 32(2), 501–529.
43. KINMAGBAHOHOUE, F. H., & YABI, A. J. (2023). Déterminants de l’adoption simultanée des pratiques agroécologiques des producteurs de coton au nord du Bénin. African Scientific Journal, 3(18), 144–160.
44. Leakey, R. R. B. (1998). Agroforestry in the humid lowlands of West Africa: Some reflections on future direction for research. Agroforestry Systems, 40, 253–262.
45. Lele, U., Pretty, J., Terry, E., & Trigo, E. (2020). Transforming agricultural research and education for sustainable food and agriculture. Agricultural Systems, 177, 102736. https://doi.org/10.1016/j.agsy.2019.102736
46. Maharjan, G. R., Ruidisch, M., Shope, C. L., Choi, K., Huwe, B., Kim, S. J., Tenhunen, J., & Arnhold, S. (2016). Assessing the effectiveness of split fertilization and cover crop cultivation in order to conserve soil and water resources and improve crop productivity. Agricultural Water Management, 163, 305–318.
47. Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications.
48. Montanarella, L., & Panagos, P. (2021). The relevance of sustainable soil management within the European Green Deal. Land Use Policy, 100, 104925.
49. Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268–13272.
50. Neuman, W. L. (2014). Social research methods: Qualitative and quantitative approaches (7th ed.). Pearson.
51. Orsini, F., Kahane, R., Nono-Womdim, R., & Gianquinto, G. (2013). Urban agriculture in the developing world: A review. Agronomy for Sustainable Development, 33, 695–720.
52. Ouedraogo, M., & Levard, L. (2022). Évaluation de l’agroécologie dans les villages de Guiè et Douré (région du Plateau-central, Burkina Faso). Gret.
53. Ouedraogo, I. (2022). Sustainable agricultural practices. Journal of Environmental Studies, 50(3), 215–230.
54. Pardo, M. T., Almendros, G., Zancada, M. C., & López-Fando, C. (2010). Biofertilization of degraded southern African soils with cyanobacteria affects organic matter content and quality. Arid Land Research and Management, 24(4), 328–343.
55. Pimentel, D., & Burgess, M. (2014). Environmental and economic costs of the application of pesticides primarily in the United States. Integrated Pest Management, 6, 47–71.
56. Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55(7), 573–582.
57. Pingali, P. (2012). Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302–12308. https://doi.org/10.1073/pnas.0912953109
58. Place, F. (2009). Land tenure and agricultural productivity in Africa: A comparative analysis of the economics literature and recent policy strategies and reforms. World Development, 37(8), 1326–1336. https://doi.org/10.1016/j.worlddev.2008.08.020
59. Place, F., & Hazell, P. (1993). Productivity effects of indigenous land tenure systems in Sub-Saharan Africa. American Journal of Agricultural Economics, 75(1), 10–19. https://doi.org/10.2307/1242931
60. Ponisio, L. C., M’Gonigle, L. K., Mace, K. C., Palomino, J., de Valpine, P., & Kremen, C. (2015). Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society B, 282(1799), 20141396. https://doi.org/10.1098/rspb.2014.1396
61. Pretty, J. (1995). Regenerating agriculture: Policies and practice for sustainability and self-reliance. Earthscan.
62. Pretty, J. (2018). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596.
63. Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596. https://doi.org/10.1093/aob/mcu205
64. Pretty, J., & Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6(1), 152–182. https://doi.org/10.3390/insects6010152
65. Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., ... & Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441–446. https://doi.org/10.1038/s41893-018-0114-0
66. Prokopy, L. S., Floress, K., Klotthor-Weinkauf, D., & Baumgart-Getz, A. (2008). Determinants of agricultural best management practice adoption: Evidence from the literature. Journal of Soil and Water Conservation, 63(5), 300–311. https://doi.org/10.2489/jswc.63.5.300
67. Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development, 32(1), 273–303.
68. Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 15221. https://doi.org/10.1038/nplants.2015.221
69. Rockström, J., Kaumbutho, P., Mwalley, J., Nzabi, A. W., Temesgen, M., Mawenya, L., Barron, J., Mutua, J., & Damgaard-Larsen, S. (2009). Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil and Tillage Research, 103, 23–32.
70. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E. F., & Foley, J. A. (2017). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), 32.
71. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
72. Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., ... & Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91–108.
73. Sindayigaya, E. (2023). Analyse de l’adoption des bonnes pratiques agro-environnementales et de l’impact rendement des exploitants de la commune Muranvya au Burundi. Mémoire inédit.
74. Sindayigaya, M. (2023b). Agricultural practices in the DRC. African Journal of Agriculture, 12(4), 233–248.
75. Sossou, H. H., Adekambi, S. A., Codjo, V., & Houedjofonon, E. M. (2021). Typologie des exploitations agricoles : caractérisation et accès aux services agricoles au Bénin (Afrique de l’Ouest). International Journal of Biological and Chemical Sciences, 15(3), 119–1207.
76. Sotamenou, J., & Parrot, L. (2013). Sustainable urban agriculture and the adoption of composts in Cameroon. International Journal of Agricultural Sustainability, 11(3), 282–295.
77. Soumare, M. D., Mnkeni, P. N. S., & Khouma, M. (2002). Effects of Casuarina equisetifolia compost litter and ramial wood chips on tomato growth and soil properties in Niayes. Arid Land Research and Management, 16(4), 329–343.
78. UN-HABITAT. (2004). The state of the world’s cities 2004/2005: Globalization and urban culture. United Nations Human Settlements Programme. http://mirror.unhabitat.org/pmss/listitemDetails.aspx?publicationID=1163
79. Tilman, D. (2021). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Nature Sustainability, 4(1), 6–8.
80. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2019). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108
81. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.
82. Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90.
83. Tittonell, P. (2014). Ecological intensification. Current Opinion in Environmental Sustainability, 8, 53–61.
84. Tixier, P., & De Bon, H. (2006). Urban horticulture. In RUAF Foundation (Ed.), Cities farming for the future: Urban agriculture for green and productive cities (pp. 313–346). IDRC & IIRR.
85. Tscharntke, T., Clough, Y., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J. H., & Whitbread, A. (2012). Landscape perspectives on agricultural intensification and biodiversity: Ecosystem service management. Ecology Letters, 15(10), 885–895.
86. Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C., & Batáry, P. (2016). Ecosystem services and biodiversity conservation in agricultural landscapes—Intensification and trade-offs. Biological Reviews, 91(3), 544–563.
87. Udry, C. (1996). Gender, agricultural production, and the theory of the household. Journal of Political Economy, 104(5), 1010–1046. https://doi.org/10.1086/262050
88. Vanclay, F. (2004). Social principles for agricultural extension to assist in the promotion of conservation farming. Australian Journal of Experimental Agriculture, 44(3), 213–222. https://doi.org/10.1071/EA02139
89. Wezel, A., & Soldat, V. (2009). A quantitative and qualitative historical analysis of the scientific discipline of agroecology. International Journal of Agricultural Sustainability, 7(1), 3–18.
90. Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2014). Agroecology as a science, a movement and a practice: A review. Agronomy for Sustainable Development, 34(2), 251–269
91. Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture: A review. Agronomy for Sustainable Development, 34(1), 1–20.
92. Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A., Peigné, J., & others. (2020). The adoption of agroecological practices: Between social constraints and economic opportunities. Agriculture and Human Values, 37(3), 1363–1380.
93. Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59.
94. Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecology Letters, 8(8), 857–874.
95. World Bank. (2019). Agriculture for development. World Bank Publications.
96. Zebarth, B. J., Drury, C. F., Tremblay, N., & Cambouris, A. N. (2009). Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Canadian Journal of Soil Science, 89(2), 113–132.
97. Zhou, Z., Dionisio, K. L., Verissimo, T. G., Kerr, A. S., Coull, B., Arku, R. E., Koutrakis, P., Spengler, J. D., Hughes, A. F., Vallarino, J., Agyei-Mensah, S., & Ezzati, M. (2013). Chemical composition and sources of particulate matter air pollution in Accra, Ghana. Environmental Science & Technology, 47(9), 4560–4567. https://doi.org/10.1021/es304942r
98. World Health Organization. (2014). WHO guidelines for indoor air quality: Household fuel combustion. WHO Press.
99. Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., van Noordwijk, M., & Wang, M. (2016). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6, 29987. https://doi.org/10.1038/srep29987
Published
2025-12-07
How to Cite
Kazadi, L. K., Dikoshi, R. M. I., Lokoto, B. M., Mujike, D. N., Nsele, M. K., Kalumbu, J. T., Fyama, J. N. M., & Mukanya, M. K. B. (2025). Assessment of Knowledge and Implementation of AgroEnvironmental Techniques by Farmers in Kanyameshi and Mimbulu Villages, peri-Urban Area of Lubumbashi, HautKatanga Democratic Republic of Congo. European Scientific Journal, ESJ, 48, 171. Retrieved from https://eujournal.org/index.php/esj/article/view/20406
Section
ESI Preprints