Rejets d’abattoir et qualité de l’eau : la rivière Yilia, Guinée
Abstract
La qualité de l’eau des rivières est fortement influencée par les rejets industriels et domestiques, notamment ceux des abattoirs. Cette étude évalue l’impact des rejets de l’abattoir communal sur la qualité des eaux de la rivière Yilia, à N’Zérékoré (Guinée). Des échantillons ont été prélevés en amont (STA) et en aval (SAV) et analysés pour les paramètres physico-chimiques et microbiologiques, tandis que les déchets solides et liquides ont été quantifiés par enquêtes et mesures directes. Les résultats montrent une dégradation significative en aval, avec turbidité élevée (57,6 ± 21,8 NTU), matières en suspension importantes (400 ± 50 mg/L) et contamination bactérienne (coliformes fécaux : 33,9 ± 4,9 UFC/100 mL). L’abattoir produit 1,4 t de déchets solides/semi-solides et 1 458 L d’effluents liquides, déversés sans traitement. Les différences entre stations sont significatives (p < 0,05). Ces résultats confirment l’impact négatif des rejets sur la qualité de l’eau et soulignent la nécessité de stratégies de gestion durable des déchets et effluents pour protéger cet écosystème et la santé publique.
Pollution of surface waters by slaughterhouse effluents represents a major environmental and public health concern in many sub-Saharan African cities. This study assesses the impact of discharges from the municipal slaughterhouse on the water quality of the Yilia River in N’Zérékoré, Guinea. Water samples were collected upstream (STA) and downstream (SAV) of the discharge point and analyzed using standardized methods (APHA, AFNOR) for physicochemical parameters (pH, temperature, turbidity, electrical conductivity, total dissolved solids, suspended solids, nitrates and nitrites) and microbiological indicators (total and fecal coliforms). In parallel, slaughterhouse waste was characterized and quantified through field observations, surveys and direct measurements.
The results indicate a significant deterioration of water quality downstream of the slaughterhouse. The SAV station showed high turbidity (57.6 ± 21.8 NTU), elevated suspended solids (400 ± 50 mg/L), increased mineralization, and marked bacterial contamination (fecal coliforms: 33.9 ± 4.9 CFU/100 mL) compared with the upstream station. The slaughterhouse generates on average 1.4 tons of solid and semi-solid waste per day and approximately 1,458 L of liquid effluents, most of which are discharged directly into the environment without prior treatment. Statistical analyses confirmed significant differences between upstream and downstream stations for most parameters (p < 0.05). These findings demonstrate the negative impact of slaughterhouse effluents on the physicochemical and microbiological quality of the Yilia River and highlight the urgent need to implement appropriate waste and effluent management systems in order to protect aquatic ecosystems and reduce health risks for local populations.
Downloads
Metrics
References
2. Adeyemo, F. O., Akanbi, O. A., & Akinpelu, A. O. (2002). Microbiological quality of surface water receiving abattoir effluents in Nigeria. Journal of Water Supply: Research and Technology – Aqua, 51(3), 177–181.
3. Akan, J. C., Abdulrahman, F. I., Dimari, G. A., & Ogugbuaja, V. O. (2010). Physicochemical determination of pollutants in wastewater and vegetable samples along Jakara wastewater channel in Kano State, Nigeria. European Journal of Scientific Research, 43(3), 336–343.
4. Akanji, A. O., Afolabi, T. A., & Adewuyi, G. O. (2021). Assessment of abattoir effluent discharge and its impact on surface water quality in Nigeria. Environmental Monitoring and Assessment, 193, 1–14.
5. AFNOR. (2001). Qualité de l’eau – Prélèvement des échantillons. France.
6. AFNOR. (2003). Qualité de l’eau – Mesures physico-chimiques. France.
7. APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington, DC.
8. CCME. (2001). Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Canadian Council of Ministers of the Environment, Environment Canada, Ottawa, Canada, pp. 1–5.
9. Chapman, D. (1996). Water Quality Assessments. UNESCO/WHO/UNEP.
10. Chennaoui, H. (2003). Gestion des effluents d’abattoir au Maroc. Revue des Sciences de l’Eau, 16(2), 157–164.
11. Dargahi, A., Vosoughi, M., Gholami, M., & Amirmozafari, N. (2016). Evaluation of pollution load from slaughterhouse wastewater. Desalination and Water Treatment, 57(54), 25926–25933.
12. Edokpayi, J. N., Odiyo, J. O., & Durowoju, O. S. (2017). Impact of wastewater on surface water quality in developing countries. Water Quality, InTechOpen, pp. 1–24.
13. FAO. (1997). Water quality for agriculture. FAO Irrigation and Drainage Paper 29.
14. FAO. (2019). Slaughterhouse Waste Management : A Practical Guide for Developing Countries. Rome.
15. Gana, J., Busari, T., & Adedeji, O. (2020). Environmental effects of untreated abattoir wastewater on surface water and groundwater. Journal of Environmental Science and Pollution Research, 5(2), 45–54.
16. Goldin, S. S., Becker, G., & Hellen, J. (1985). Wastewater characterization from abattoirs. Water Science and Technology, 17(5–6), 707–714.
17. Kayeye, D. (2014). Urban abattoirs and water pollution in Africa. African Journal of Environmental Studies, 8(1), 22–30.
18. Longe, E. O., & Omole, D. O. (2007). Analysis of pollution status of River Illo, Nigeria. The Environmentalist, 27, 181–191.
19. Merhabi, M., Rahimi, E., & Mohammadi, A. (2019). Fecal contamination of rivers receiving abattoir effluents. Environmental Monitoring and Assessment, 191, 124.
20. Moussavi, G., & Khosravi, R. (2020). The removal of organic pollutants from abattoir wastewater : A review. Journal of Environmental Management, 262, 110–123. https://doi.org/10.1016/j.jenvman.2020.110123
21. Okoye, C. O., & Okunrobo, O. (2019). Impact of abattoir effluent on the water quality of receiving streams. African Journal of Environmental Science and Technology, 13(9), 333–341.
22. Rodier, J. (2005). L’analyse de l’eau – Eaux naturelles, eaux résiduaires, eaux de mer. Dunod, Paris.
23. Sahoo, D., Kim, K., Powell, M. A., & Huang, X. (2023). Conceptualizing turbidity for aquatic ecosystems in the context of sustainable development goals. Environmental Science : Advances, 2, 140–155. https://doi.org/10.1039/d2va00327a
24. Tsegaye, G., Getaneh, A., & Desta, T. (2021). Effects of abattoir effluent on water quality and aquatic ecosystem health : A review. Environmental Monitoring and Assessment, 193, 1–16. https://doi.org/10.1007/s10661-021-09234-5
25. Vymazal, J. (2022). Organic pollution, suspended solids and light limitation in freshwater ecosystems. Science of the Total Environment, 806, 150–162. https://doi.org/10.1016/j.scitotenv.2021.150162
26. Walter, R. K., Burton, H. M., & Smith, J. L. (1974). Water quality monitoring in African rivers. Journal of Water Pollution Control, 46(2), 233–242.
27. WHO. (2017). Guidelines for Drinking-water Quality (4th ed.). Geneva, Switzerland
Copyright (c) 2026 Nouhan Keita, Nathalie Sia Doumbou Tenkiano

This work is licensed under a Creative Commons Attribution 4.0 International License.


