Theophylline and Caffeine Content in Black Tea Produced in Burundi
Abstract
To date, the specific levels of theophylline in Burundian tea remain unknown, and scientific information regarding caffeine content is limited. This study aims to address this gap by determining the content of these methylxanthines in different grades of black tea produced across the six main tea-growing regions of Burundi. Using High-Performance Liquid Chromatography (HPLC) based on the refernce NTC-ISO 20481 method, samples collected from a dry-season production by Office du Thé du Burundi (OTB) and Promotion pour la Théiculture à Mwaro (PROTHEM) were analyzed. The results revealed that the theophylline content ranged from 0.145% to 0.279%, while caffeine levels varied between 1.979% and 3.331%. The significant variations (p < 0.05) depending on both the region and the tea grade were also revealed. Generally, the PD and D1 grades were identified as the richest in methylxanthines, with OTB-produced teas showing higher concentrations than those from PROTHEM. These findings confirm that Burundian tea is comparable to premium East African teas and remains within safe limits for daily consumption. The results of this study should help consumers to control the amount of these methylxanthines according to their nutritional needs, while Burundian black tea companies could use them to better promote this product and better position themselves on the international market.
Downloads
References
2. Astill, C., Birch, M. R., Dacombe, C., Humphrey, P. G., & Martin, P. T. (2001). Factors Affecting the Caffeine and Polyphenol Contents of Black and Green Tea Infusions. Journal of Agricultural and Food Chemistry, 49(11), 5340‑5347. https://doi.org/10.1021/jf010759+
3. Baek, G.-H., Yang, S.-W., Yun, C.-I., Lee, J.-G., & Kim, Y.-J. (2022). Determination of methylxanthine contents and risk characterisation for various types of tea in Korea. Food Control, 132, 108543. https://doi.org/10.1016/j.foodcont.2021.108543
4. Bruneton, J. (2009). Pharmacognosie, phytochimie, plantes médicinales ((4e éd.)). 75008 Paris.
5. de Sena, A. R., de Assis, S. A., & Branco, A. (2011). Analysis of Theobromine and Related Compounds by Reversed Phase High-Performance Liquid Chromatography with Ultraviolet Detection : An Update (1992–2011).
6. Dubuis, E., Wortley, M. A., Grace, M. S., Maher, S. A., Adcock, J. J., Birrell, M. A., & Belvisi, M. G. (2014). Theophylline inhibits the cough reflex through a novel mechanism of action. Journal of Allergy and Clinical Immunology, 133(6), 1588‑1598. https://doi.org/10.1016/j.jaci.2013.11.017
7. Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42. [Logiciel].
8. Dutta, P. (2017, septembre 11). WHO Encourages Tea Drinking for a New Generation. World Tea News. https://www.worldteanews.com/Features/who-encourages-tea-drinking-new-generation
9. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2015). Scientific Opinion on the safety of caffeine. EFSA Journal, 13(5). https://doi.org/10.2903/j.efsa.2015.4102
10. Fernández, P. L., Pablos, F., Martín, M. J., & González, A. G. (2002). Study of Catechin and Xanthine Tea Profiles as Geographical Tracers. Journal of Agricultural and Food Chemistry, 50(7), 1833‑1839. https://doi.org/10.1021/jf0114435
11. Graham, H.N. (1984a). Tea : The plant and its manufacture; chemistry and consumption of the beverage. In : Spiller, G.A., ed., The Methylxanthine Beverages and Foods : Chemistry, Consumption and Health Effects, New York, Alan R. Liss, pp. 29–74).
12. Hicks, A. (2009). Current Status and Future Development of Global Tea Production and Tea Products*.
13. Hicks, M. B., Hsieh, Y.-H. P., & Bell, L. N. (1996). Tea preparation and its influence on methylxanthine concentration. Food Research International, 29(3‑4), 325‑330. https://doi.org/10.1016/0963-9969(96)00038-5
14. Horžić, D., Komes, D., Belščak, A., Ganić, K. K., Iveković, D., & Karlović, D. (2009). The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chemistry, 115(2), 441‑448. https://doi.org/10.1016/j.foodchem.2008.12.022
15. IBM SPSS Statistics for Windows (Version 27.0). (2020). [Logiciel]. IBM Corp.
16. Jafari, M. T., Rezaei, B., & Javaheri, M. (2011). A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline. Food Chemistry, 126(4), 1964‑1970. https://doi.org/10.1016/j.foodchem.2010.12.054
17. Khokhar, S., & Magnusdottir, S. G. M. (2002). Total Phenol, Catechin, and Caffeine Contents of Teas Commonly Consumed in the United Kingdom. Journal of Agricultural and Food Chemistry, 50(3), 565‑570. https://doi.org/10.1021/jf010153l
18. Londzin, P., Zamora, M., Kąkol, B., Taborek, A., & Folwarczna, J. (2021). Potential of Caffeine in Alzheimer’s Disease—A Review of Experimental Studies. Nutrients, 13(2), 537. https://doi.org/10.3390/nu13020537
19. López-Martı́nez, L., López-de-Alba, P. L., Garcı́a-Campos, R., & De León-Rodrı́guez, L. M. (2003). Simultaneous determination of methylxanthines in coffees and teas by UV-Vis spectrophotometry and partial least squares. Analytica Chimica Acta, 493(1), 83‑94. https://doi.org/10.1016/S0003-2670(03)00862-6
20. Matte, J., Lapointe, M., & LeBel, M. (1982). Guide posologique de la theophylline et ses sels. Canadian Family Physician, 28, 111‑115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2306292/
21. Montaño, L. M., Sommer, B., Gomez-Verjan, J. C., Morales-Paoli, G. S., Ramírez-Salinas, G. L., Solís-Chagoyán, H., Sanchez-Florentino, Z. A., Calixto, E., Pérez-Figueroa, G. E., Carter, R., Jaimez-Melgoza, R., Romero-Martínez, B. S., & Flores-Soto, E. (2022). Theophylline : Old Drug in a New Light, Application in COVID-19 through Computational Studies. International Journal of Molecular Sciences, 23(8), Article 8. https://doi.org/10.3390/ijms23084167
22. Monteiro, J. P., Alves, M. G., Oliveira, P. F., & Silva, B. M. (2016). Structure-Bioactivity Relationships of Methylxanthines : Trying to Make Sense of All the Promises and the Drawbacks. Molecules, 21(8), Article 8. https://doi.org/10.3390/molecules21080974
23. Mourya, S., Bodla, R., Taurean, R., & Sharma, A. (2019). Simultaneous estimation of xanthine alkaloids (Theophylline, Theobromine and Caffeine) by High-Performance Liquid Chromatography. International Journal of Drug Regulatory Affairs, 7(2), 35‑41. https://doi.org/10.22270/ijdra.v7i2.315
24. NTC-ISO 20481. (2008). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) 2008 Café y Productos del Café Determinación del Contenido de Cafeína Usando Cromatografía Líquida de Alto Desempeño (HPLC), NTC-ISO 20481 (Colombia : Instituto Colombiano de Normas Técnicas y Certificación).
25. Rahman, M. M., Kalam, M. A., Salam, M. A., & Rana, M. R. (2013). Aged leaves effect on essential components in green and oolong tea. International Journal of Agricultural Research, Innovation and Technology, 3(2), Article 2. https://doi.org/10.3329/ijarit.v3i2.17845
26. Rodriguez, A., Costa-Bauza, A., Saez-Torres, C., Rodrigo, D., & Grases, F. (2015). HPLC method for urinary theobromine determination : Effect of consumption of cocoa products on theobromine urinary excretion in children. Clinical Biochemistry, 48(16), 1138‑1143. https://doi.org/10.1016/j.clinbiochem.2015.06.022
27. Sajilata, M. g., Bajaj, P. R., & Singhal, R. s. (2008). Tea Polyphenols as Nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 7(3), 229‑254. https://doi.org/10.1111/j.1541-4337.2008.00043.x
28. Sanchez, J. (2017). Methylxanthine Content in Commonly Consumed Foods in Spain and Determination of Its Intake during Consumption. Foods, 6(12), 109. https://doi.org/10.3390/foods6120109
29. Srdjenovic, B., Djordjevic-Milic, V., Grujic, N., Injac, R., & Lepojevic, Z. (2008). Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal Products. Journal of Chromatographic Science, 46(2), 144‑149. https://doi.org/10.1093/chromsci/46.2.144
30. Szymański, M., Korbas, J., & Szymański, A. (2022). Methylxanthines release from various teas during extraction with water. Acta Poloniae Pharmaceutica, 78, 781‑788. https://doi.org/10.32383/appdr/145572
31. Turkmen, N., & Velioglu, Y. S. (2007). Determination of alkaloids and phenolic compounds in black tea processed by two different methods in different plucking seasons. Journal of the Science of Food and Agriculture, 87(7), 1408‑1416. https://doi.org/10.1002/jsfa.2881
32. Zareef, M., Mehedi Hassan, M., Arslan, M., Ahmad, W., Ali, S., Ouyang, Q., Li, H., Wu, X., & Chen, Q. (2020). Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration. Microchemical Journal, 159, 105431. https://doi.org/10.1016/j.microc.2020.105431
33. Zhu, B., Haghi, M., Goud, M., Young, P. M., & Traini, D. (2015). The formulation of a pressurized metered dose inhaler containing theophylline for inhalation. European Journal of Pharmaceutical Sciences, 76, 68‑72. https://doi.org/10.1016/j.ejps.2015.04.016
34. Zhu, X., Chen, B., Ma, M., Luo, X., Zhang, F., Yao, S., Wan, Z., Yang, D., & Hang, H. (2004). Simultaneous analysis of theanine, chlorogenic acid, purine alkaloids and catechins in tea samples with the help of multi-dimension information of on-line high performance liquid chromatography/electrospray–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 34(3), 695‑704. https://doi.org/10.1016/S0731-7085(03)00605-8
Copyright (c) 2026 Alice Ndayirukiye, Ferdinand Ndikuryayo, Pierre Claver Mpawenayo, Jeremie Ngezahayo, Godefroid Gahungu

This work is licensed under a Creative Commons Attribution 4.0 International License.


