Pesticidal activity of leaves and seeds extracts of Tephrosia vogelii Hook. f. and Ricinus communis L. on insects damaging crops and stored food

  • Liberata Nizigiyimana Research Center in Natural Sciences and Environment, Faculty of Sciences, Université du Burundi, UNESCO Avenue 2, Bujumbura, Burundi
  • Alexis Ngendakuriyo Research Center in Natural Sciences and Environment, Faculty of Sciences, Université du Burundi, UNESCO Avenue 2, Bujumbura, Burundi CVO Lethas-Campus Pouppe, Place Rouppe, Bruxelles, Belgique
  • Jeremie Ngezahayo Research Center in Natural Sciences and Environment, Faculty of Sciences, Université du Burundi, UNESCO Avenue 2, Bujumbura, Burundi
  • Manasse Nihorimbere Research Center in Natural Sciences and Environment, Faculty of Sciences, Université du Burundi, UNESCO Avenue 2, Bujumbura, Burundi
  • Aloys Katihabwa Research Center in Natural Sciences and Environment, Faculty of Sciences, Université du Burundi, UNESCO Avenue 2, Bujumbura, Burundi
  • Deogratias Nduwarugira Research Center in Natural Sciences and Environment, Faculty of Sciences, Université du Burundi, UNESCO Avenue 2, Bujumbura, Burundi
Keywords: Plant extract, harvest, insecticidal effect, maceration, insect pests

Abstract

Synthetic pesticides and biopesticides are currently used to control insect pests of crops and harvests. However, biopesticides are more highly recommended because they are environmentally friendly and safe for human health.

This study aimed to highlight the pesticidal effect of Tephrosia vogelii and Ricinus communis on four insects: Spodoptera frugiperda, Aphis fabae, Acanthoscelides obtectus, and Sitophilus zeamais. The leaves and seeds of these plants were collected from the fields and analyzed in the laboratory to perform phytochemical screening and test their toxicity to these insects.

Results showed that the phytochemistry of the two plants varied from one plant to another and from one extract to another. Aqueous extracts of fresh T. vogelii and R. communis leaves (125 g/L and 250 g/L, respectively) resulted in mortality rates exceeding 50% for A. fabae. Aqueous extracts of T. vogelii leaves were more effective than those of R. communis leaves against S. frugiperda in terms of mortality rates. LD50 of aqueous extracts of T. vogelii leaves was 114 g/L for A. fabae.

Most organic extracts (4 mg/L) of both plants achieved mortality rates exceeding 60% for A. obtectus and S. zeamais. Hexane extract (4 mg/L) of T. vogelii leaves and seeds showed better results for treating A. obtectus (LD50 = 1 mg/L–1.33 mg/L). Similarly, hexane extract of T. vogelii seeds showed better results for treating S. zeamais (LD50=1.66 mg/ml). Therefore, it can be concluded that R. communis and T. vogelii could be alternative treatments for insect pests of crops and harvests.

Downloads

Download data is not yet available.

References

1. Anjarwalla, P., Belmain, S., Sola, P., Jamnadass, R., & Stevenson, P. C. (2016). Guide des plantes pesticides Optimisation des plantes pesticides : technologie, Innovation, sensibilisation & réseaux. In World Agroforestry Centre.
2. Behrens, B., & Kärber, G. (1934). Wie sind Reihenversuche für biologische Auswertungen am zweckmäßigsten anzuordnen? Naunyn-Schmiedebergs Archiv Für Experimentelle Pathologie Und Pharmakologie, 177(2), 379–388.
3. Bigi, M. F. M., Torkomian, V. L., De Groote, S. T., Hebling, M. J. A., Bueno, O. C., Pagnocca, F. C., & Da Silva, M. F. G. (2004). Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Management Science, 60(9), 933–938.
4. Bortoli, S., & Coumoul, X. (2018). Impact des pesticides sur la santé humaine. Pratiques En Nutrition, 14(53), 18–24. https://doi.org/10.1016/j.pranut.2017.12.005
5. Bruneton, J. (2016). Pharmacognosie: Phytochimie-plantes médicinales.
6. Derradji-Heffaf, F. (2013). Composition chimique et activité insecticide de trois extraits végétaux à l’égard de Sitophilus oryzae (L.)(Coleoptera: Curculionidae).
7. Ferji, Z., Mayad, E., & Alfalah, M. (2013). Management of Root Knot Nematode Affecting Banana Crop by Using Organic Amendment And Biological Products. Biology, Agriculture and Healthcare, 7(17).
8. Ferji, Z., Mayad, E., Laghdaf, T., & Cherif, E. M. (2006). Effect of organic amendments Ricinus communis and Azadirachta indica on root-knot nematodes Meloidogyne javanica infecting tomato in Morocco. 325–328.
9. Ghnimi, W., Dicko, A., Khouja, M. L., & Ferchichi, H. (2014). Larvicidal activity, phytochemical composition, and antioxidant properties of different parts of five populations of Ricinus communis L. Industrial Crops and Products, 56, 43–51.
10. Guèye, M. T. (2012). Gestion intégrée des ravageurs de céréales et de légumineuses stockées au Sénégal par l’utilisation de substances issues de plantes.
11. INADES-Formation. (2021). SOLUTIONS ALTERNATIVES AUX PESTICIDES CHIMIQUES DE SYNTHESE, RAPPORT FINAL Bujumbura.
12. Kamugire, D. B., & Nshutiyayesu, S. (2020). Assessing the Effectiveness of Indigenous Plants on Postharvest Pests Control in Rwanda: Case of Tetradenia Riparia and Tephrosia Vogelii on Bean Weevil (Acanthoscelides obtectus). East African Journal of Science and Technology, 10(10).
13. Kanana, P. T. D., & Muniengi, B. I. (2018). Effet insecticide des poudres de quelques plantes sur la conservation des semences de maïs contre les charançons Sitophilus zeamais Motsch. Revue Africaine d’Environnement et d’Agriculture, 1(2), 9–13.
14. Khani, A., & Rahdari, T. (2012). Chemical composition and insecticidal activity of essential oil from Coriandrum sativum seeds against Tribolium confusum and Callosobruchus maculatus. International Scholarly Research Notices, 1, 263517.
15. Kodjo, T. A., Gbénonchi, M., Sadate, A., Komi, A., Yaovi, G., Dieudonné, M., & Komla, S. (2011). Bio-insecticidal effects of plant extracts and oil emulsions of Ricinus communis L. (Malpighiales: Euphorbiaceae) on the diamondback, Plutella xylostella L. (Lepidoptera: Plutellidae) under laboratory and semi-field conditions. Journal of Applied Biosciences, 43, 16.
16. Koona, P., Malaa, D., & Koona, O. E. (2007). Hexane extracts from Tephrosia vogelii Hook. f. protect stored maize against the weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Entomological Science, 10(2), 107–111.
17. Krief, S. (2003). Métabolites secondaires des plantes et comportement animal: surveillance sanitaire et observations de l’alimentation des chimpanzés (Pan troglodytes schweinfurthii) en Ouganda. Activités biologiques et étude chimique de plantes consommées.
18. Kumar, R. (1991). La lutte contre les insectes ravageurs : la situation de l’agriculture africaine. KARTHALA Editions.
19. Macheix, J. J., Fleuriet, A., & Jay-Allemand, C. (2005). Les composés phénoliques des végétaux: un exemple de métabolites secondaires d’importance économique.
20. Mikolo, B., Massamba, D., Matos, L., Lenga, A., Mbani, G., & Balounga, P. (2007). Conditions de stockage et revue de l’entomofaune des denrées stockées du Congo Brazza ville. Journal Des Sciences, 7(1), 30–38.
21. Mossa, A. T. H. (2016). Green Pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, 9(5), 354–378. https://doi.org/10.3923/jest.2016.354.378
22. Ndomo, A. F., Tapondjou, A. L., Tendonkeng, F., & Tchouanguep, F. M. (2009). Evaluation des propriétés insecticides des feuilles de Callistemon viminalis (Myrtaceae) contre les adultes d’Acanthoscelides obtectus (Say) (Coleoptera; Bruchidae). Tropicultura, 27(237), 137–143.
23. Nsomue, A. N., Mulungu, H. B., Kishiko, G. M., Kabemba, A. M., wa Pangu, J. P., Ntebua Malale, M. C., & Ngoy Nyembo, D. (2020). Effet de quelques plantes locales sur les charançons du maïs (Sitophilus zeamais Motsch.) en entrepôt dans la ville de Kabinda en République Démocratique du Congo. Revue Africaine d’Environnement et d’Agriculture, 3(2), 11–16.
24. Parh, I. A., Forbuzo, B. C., Matheney, E. L., & Ayafor, J. F. (1998). Plants used for the control of insect pests on stored grains in parts of North West Highland Savana zone of Cameroon. Sciences Agronomiques et Développement, 1(1), 54–60.
25. Ramos-López, M. A., Pérez, S., Rodríguez-Hernández, G. C., Guevara-Fefer, P., & Zavala-Sanchez, M. A. (2010). Activity of Ricinus communis (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). African Journal of Biotechnology, 9(9), 1359–1365. https://doi.org/10.5897/ajb10.1621
26. Redlinger, L. M., Zettler, L. J., Davis, R., & Simonaitis, R. A. (1988). Evaluation of Pirimiphos-Methyl as a Protectant for Export Grain. Ournal of Economic Entomology, 81(2), 718–721. https://doi.org/https://doi.org/10.1093/jee/81.2.718
27. Regnault-Roger, C., Ribodeau, M., Hamraoui, A., Bareau, I., Blanchard, P., Gil-Munoz, M. I., & Barberan, F. T. (2004). Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). Journal of Stored Products Research, 40(4), 395–408. https://doi.org/https://doi.org/10.1016/S0022-474X(03)00031-6
28. Rihab, B., & Amina, S. (2020). Synthèse bibliographique sur les méthodes de lutte contre les ravageurs des denrées stockées.
29. Siame, C. P., Chitambo, H., Muma, J. B., Choongo, K., & Moonga, E. (2019). Field assessment of the efficacy of Tephrosia vogelii leaf extracts for control of ticks on naturally infested cattle in the field condition. Journal of Parasitic Diseases, 43, 624–632.
30. Stoll, G. (2002). Protection naturelle des végétaux en zones tropicales: vers une dynamique de l’information.
31. Tapondjou, A. L., Bouda, H., Fontem, D. A., Zapfack, L., Lontsi, D., & Sondengam, B. L. (2000). Local plants used for traditional stored product protection in the Menoua division of the Western highlands of Cameroon. Integrated Protection of Stored Products, 23(10), 73–77.
32. Windholz, M. (1983). The Merck Index, an encyclopedia of chemicals, drugs and biologicals Merck & Co., 10th Edition, Rhway, NJ.
33. Zaynab, M., Sharif, Y., Abbas, S., Afzal, M. Z., Qasim, M., Khalofah, A., & Li, S. (2021). Saponin toxicity as key player in plant defense against pathogens. Toxicon, 193, 21–27. https://doi.org/https://doi.org/10.1016/j.toxicon.2021.01.009
34. Zhang, P., Qin, D., Chen, J., & Zhang, Z. (2020). Plants in the Genus Tephrosia: Valuable Resources for Botanical Insecticides. Insects, 11(10), 721. https://doi.org/https://doi.org/10.3390/insects11100721
Published
2026-02-10
How to Cite
Nizigiyimana, L., Ngendakuriyo, A., Ngezahayo, J., Nihorimbere, M., Katihabwa, A., & Nduwarugira, D. (2026). Pesticidal activity of leaves and seeds extracts of Tephrosia vogelii Hook. f. and Ricinus communis L. on insects damaging crops and stored food. European Scientific Journal, ESJ, 50, 53. Retrieved from https://eujournal.org/index.php/esj/article/view/20628
Section
ESI Preprints