In Vitro Evaluation of the Antibacterial and Antioxidant Activities of Extracts from Five Medicinal Plants Traditionally Used to Treat Infections in Burundi

  • Japhet Nzoyisubiziki Centre de Recherche en Sciences Naturelles et de l’Environnement, Faculté des Sciences, Université du Burundi, Bujumbura, Burundi
  • Jeremie Ngezahayo Centre de Recherche en Sciences Naturelles et de l’Environnement, Faculté des Sciences, Université du Burundi, Bujumbura, Burundi
  • Vestine Ntakarutimana Centre de Recherche en Sciences Naturelles et de l’Environnement, Faculté des Sciences, Université du Burundi, Bujumbura, Burundi
  • Amandine Nachtergael Service de Chimie Thérapeutique et Pharmacognosie, Université de Mons (UMONS), Belgique
  • Pierre Duez Service de Chimie Thérapeutique et Pharmacognosie, Université de Mons (UMONS), Belgique
  • Mohamed Tabyaoui Laboratoire des Matériaux, Nanotechnologies et Environnement, Université Mohammed V de Rabat, Faculté des Sciences, Rabat, Maroc
Keywords: Antibacterial activity, antioxidant activity, Methicillin-Resistant Staphylococcus aureus, Mikania natalensis, Burundi herbal medicine

Abstract

Periodically, infectious diseases emerge or re-emerge, causing epidemics or pandemics that decimate populations worldwide. Although hygiene and antibiotics have effectively controlled infections, the emergence of new pathogens resistant to existing antimicrobial agents remains a global threat. In response to the growing interest in medicinal plants as potentially safe and renewable alternatives, extracts from five plants used in traditional Burundian medicine, namely Mikania natalens DC., Helichrysum congolanum Schltr. & O. Hoffm., Justicia nyassana Lindau, Urtica massaica Mildbr. and Senecio maranguensis O. Hoffm., were evaluated for antibacterial and antioxidant potential. Antibacterial activities were assessed on fifteen bacterial strains using microdilution method and TLC-bioautography, while antioxidant activity was assessed through the DPPH radical scavenging method. Gram-positive strains, especially S. aureus, were generally more sensitive than Gram-negative bacteria. Four plants exhibited active extracts with MICs between 250 and 1000 µg/mL, except for S. maranguensis (MICs ≥ 2000 µg/mL). M. natalensis was the most active, with dichloromethane and ethyl acetate extracts showing MICs of 250 and 500 µg/mL. Notably, its otherwise inactive extracts (MICs ≥ 1000 µg/mL) significantly potentiated β-lactams (ampicillin, oxacillin, penicillin G) and aminoglycosides (gentamycin, streptomycin) against three multi-resistant S. aureus strains, reducing their MICs by 2- to 16-fold. Methanolic extracts of all five plants displayed modest antioxidant activity with IC50s ranging from < 0.08 to 0.169 quercetin equivalents. These findings highlight the potential of Burundian medicinal plants in combating antibiotic resistances, though the safety of S. maranguensis requires caution given the well-known occurrence of genotoxic and hepatotoxic pyrrolizidine alkaloids in the genus.

Downloads

Download data is not yet available.

References

1. Ahmed, M. F. (2013). Evaluation of Antioxidant activity of Stephania japonica and Mikania cordata. East West University, Bangladesh.
2. Akinyede, K. A., Cupido, C. N., Hughes, G. D., Oguntibeju, O. O., & Ekpo, O. E. (2021). Medicinal properties and in vitro biological activities of selected helichrysum species from South Africa: A review. Plants, 10(8). https://doi.org/10.3390/plants10081566
3. Allan, K., Lizzy, M., Christine, B. I. I., & Brian, K. (2019). The antimicrobial activity of the leaves of Urtica massaica on Staphylococcus aureus , Escherichia coli . Journal of Medicinal Plants Studies, 7(2), 21–24.
4. Aspect, A., Bach, J. F., Bony, J. M., & Bordé, C. (2021). La maîtrise des maladies infectieuses: Un défi de santé publique, une ambition médico-scientifique. In La maîtrise des maladies infectieuses. EDP sciences.
5. Assaf, H., Nafady, A., Allam, A., Hamed, A., & Kamel, M. (2020). Phytochemistry and biological activity of family “Urticaceae”: a review (1957-2019). Journal of Advanced Biomedical and Pharmaceutical Sciences, 0(0), 0–0. https://doi.org/10.21608/jabps.2020.24043.1073
6. Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., & Wesolowski, A. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205.
7. Baqueiro-Peña, I., & Guerrero-Beltrán, J. (2017). Physicochemical and antioxidant characterization of Juticia spicigera. Food Chemistry, 218, 305–312. https://doi.org/10.1016/j.foodchem.2016.09.078
8. Bekro, Y.-A., Mamyrbekova, J., Boua, B., Tra Bi, F., & Ehile, E. (2007). Étude ethnobotanique et screening phytochimique de Caesalpinia benthamiana (Baill.) Herend. et Zarucchi (Caesalpiniaceae). Sciences & Nature, 4(2), 217–225. https://doi.org/10.4314/scinat.v4i2.42146
9. Bloom, D. E., & Cadarette, D. (2019). Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Frontiers in Immunology, 10, 549. https://doi.org/10.3389/fimmu.2019.00549
10. Borghi, A. A., Minatel, E., Mizobuti, D. S., de Lourenço, C. C., Fernandes de Araújo, F., Maria Pastore, G., Hewitson, P., Ignatova, S., & CHF Sawaya, A. (2023). Antioxidant and Anti-inflammatory Activity of Mikania glomerata and Mikania laevigata Extracts. Pharmacognosy Research, 15(1), 128–137. https://doi.org/10.5530/097484900264
11. Chen, H., Liu, K., Li, Z., & Wang, P. (2019). Point of care testing for infectious diseases. Clinica Chimica Acta, 493, 138–147.
12. Da Silva, A. S., Owiti, A. O., & Barbosa, W. L. R. (2018). Pharmacology of Mikania genus: A systematic review. Pharmacognosy Reviews, 1(2), 8–15. https://doi.org/10.4103/phrev.phrev
13. Diatta, B. D., Niass, O., Gueye, M., Houël, E., & Boetsch, G. (2022). Diversité Et Activité Antimicrobienne Des Plantes Impliquées Dans Le Traitement Des Affections Dermatologiques Chez Les Peul Et Les Wolof Du Ferlo Nord (Sénégal). European Scientific Journal ESJ, 18(8), 73–97. https://doi.org/10.19044/esj.2022.v18n8p73
14. Getahun, M., Nesru, Y., Ahmed, M., Satapathy, S., Shenkute, K., Gupta, N., & Naimuddin, M. (2023). Phytochemical Composition , Antioxidant , Antimicrobial , Antibiofilm , and Antiquorum Sensing Potential of Methanol Extract and Essential Oil from Acanthus polystachyus Delile ( Acanthaceae ). ACS Omega, 8(45), 43024–43036. https://doi.org/10.1021/acsomega.3c06246
15. Handa, S. S., Khanuja, S. P. S., Longo, G., & Rakesh, D. D. (2008). Extraction technologies for medicinal and aromatic plants. INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY.
16. Ivanov, A. V., Bartosch, B., & Isaguliants, M. G. (2017). Oxidative stress in infection and consequent disease. Oxidative Medicine and Cellular Longevity, 2017, 3496043. https://doi.org/10.1155/2017/3496043
17. Khatun, R., Rashid, M., Alam, A., Lee, Y.-I., & Rahman, M. A. A. (2020). Evaluation of comparative phenolic contents and antioxidant activity of Mikania species available in Bangladesh. Frontiers in Science, 10(April), 1–6. https://doi.org/10.5923/j.fs.20201001.01
18. Lourens, A. C. U., Van Vuuren, S. F., Viljoen, A. M., Davids, H., & Van Heerden, F. R. (2011). Antimicrobial activity and in vitro cytotoxicity of selected South African Helichrysum species. South African Journal of Botany, 77(1), 229–235. https://doi.org/10.1016/j.sajb.2010.05.006
19. Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., & Johnson, S. C. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/https://doi.org/10.1016/ S0140-6736(21)02724-0
20. Nahayo, A., Bigendako, M. J., Fawcett, K., Nkusi, H., Nkurikiyimfura, J. B., & Yansheng, G. U. (2008). Chemical Study of the Stems of Urtica massaica, a Medicinal Plant Eaten by Mountain Gorillas (Gorilla beringei beringei) in Parc National des Volcans, Rwanda. Res. J. Appl. Sci, 3(7), 514–520.
21. Ngezahayo, J., Havyarimana, F., Hari, L., Stévigny, C., & Duez, P. (2015). Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases. Journal of Ethnopharmacology, 173, 338–351. https://doi.org/10.1016/j.jep.2015.07.028
22. Ngezahayo, J., Ribeiro, S. O., Fontaine, V., Hari, L., Stévigny, C., & Duez, P. (2017). In vitro Study of Five Herbs Used Against Microbial Infections in Burundi. Phytotherapy Research, 31(10), 1571–1578. https://doi.org/10.1002/ptr.5887
23. Nzoyisubiziki, J., Ngezahayo, J., Ngendahimana, A., Nachtergael, A., Sindayihebura, A., Bukuru, A., Ntakarutimana, V., Tabyaoui, M., & Duez, P. (2024). Extension of the EU"Traditional Herbal Medicine" concept to an oral transmission context: the traditional uses of the five anti-infectious medicinal plants most widely used in Burundi. Ethnobotany Research and Applications, 29, 1–21. https://doi.org/http://dx.doi.org/10.32859/era.29.1.1-21
24. Okusa, P. N., Stévigny, C., Devleeschouwer, M., & Duez, P. (2010). Optimization of the culture medium used for direct TLC-bioautography. Application to the detection of antimicrobial compounds from Cordia gilletii de Wild (Boraginaceae). Journal of Planar Chromatography - Modern TLC, 23(4), 245–249. https://doi.org/10.1556/JPC.23.2010.4.1
25. Pourmorad, F., Hosseinimehr, S. J., & Shahabimajd, N. (2006). Antioxidant activity , phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(June), 1142–1145.
26. Raoul, H., & Yazdanpanah, Y. (2022). Répondre aux maladies infectieuses: un défi toujours renouvelé. Médecine/Sciences, 38(4), 335–336.
27. Rios, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1–2), 80–84. https://doi.org/10.1016/j.jep.2005.04.025
28. Rodrigues, A., Eparvier, V., Odonne, G., Amusant, N., Stien, D., & Houël, E. (2019). The antifungal potential of (Z)-ligustilide and the protective effect of eugenol demonstrated by a chemometric approach. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-45222-y
29. Rufatto, L. C., Gower, A., Schwambach, J., & Moura, S. (2012). Genus Mikania: Chemical composition and phytotherapeutical activity. Revista Brasileira de Farmacognosia, 22(6), 1384–1403. https://doi.org/10.1590/S0102-695X2012005000099
30. Sheam, M., Haque, Z., & Nain, Z. (2020). Towards the antimicrobial, therapeutic and invasive properties of Mikania micrantha Knuth: A brief overview. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(2), 92–101. https://doi.org/10.5455/jabet.2020.d112
31. Sorci, G., & Faivre, B. (2023). Âge et taux de létalité des maladies infectieuses. Médecine/Sciences, 39(3), 287–289.
32. Süzgeç-Selçuk, S., & Birteksöz, A. S. (2011). Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. South African Journal of Botany, 77(1), 170–174. https://doi.org/10.1016/j.sajb.2010.07.017
33. WHO. (2013). WHO Traditional Medicine Strategy 2014-2023. In World Health Organization. World Health Organization. https://doi.org/2013
34. Wijayaa, S., Neeb, T. K., Jinc, K. T., & Wiartb, C. (2020). Antibacterial, Antioxidant, Anti-inflammatory, and Anti-acethylcholinesterase Activity of Mikania scandens (L.) Willd (Climbing Hempvine). Asian J. Pharmacogn, 4(1), 15–24. http://www.pharmacognosyasia.com/Files/Other/AJPV4I1p1524.pdf
35. Zhou, J., Ouedraogo, M., Qu, F., & Duez, P. (2013). Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: an overview. Phytotherapy Research, 27(12), 1745–1755.
Published
2026-02-10
How to Cite
Nzoyisubiziki, J., Ngezahayo, J., Ntakarutimana, V., Nachtergael, A., Duez, P., & Tabyaoui, M. (2026). In Vitro Evaluation of the Antibacterial and Antioxidant Activities of Extracts from Five Medicinal Plants Traditionally Used to Treat Infections in Burundi. European Scientific Journal, ESJ, 50, 114. Retrieved from https://eujournal.org/index.php/esj/article/view/20631
Section
ESI Preprints