Single Versus Combined Forecasting: The Case Of Wind Run Data
Abstract
This article compared single to combined forecasts of wind run using artificial neural networks, decomposition, Holt-Winters’ and SARIMA models. The artificial neural networks utilized the feedback framework while decomposition and Holt-Winters’ approaches utilized their multiplicative versions. Holt-Winters’ performed best of single models but ranked fourth, of all fifteen models (single and combined). The combination of decomposition and Holt-Winters’ models ranked best of all two-model combinations and second of all models. Combination of decomposition, Holt-Winters’ and SARIMA performed best of three-model combinations and ranked first, of all models. The only combination of four models ranked third of all models. The accuracy of single forecast should not be underestimated as a single model (Holt-Winters’) outperformed eleven combined models. It is therefore, evident that inclusion of additional model forecast does not necessarily improve combined forecast accuracy. In any modeling situation, single and combined forecasts should be allowed to compete.
Downloads
Metrics
PlumX Statistics
Copyright (c) 2021 Bushirat T. Bolarinwa, Ismaila A. Bolarinwa
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.