Evaluacion del β–Cariofileno sobre el estrés oxidativo de ratones BALB/c con hiperglicemia inducida mediante la administración de estreptozotocina

  • María de Jesús Romero-Hernández Laboratorio de Inmunología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara
  • Oscar Gutiérrez-Coronado Laboratorio de Inmunología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara
  • José Luis Muñoz-Carrillo Laboratorio de Ciencia Básica, Facultad de Odontología, Escuela de Ciencias Biomédicas, Universidad Cuauhtémoc
  • Juan Manuel Viveros-Paredes Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara
  • Paola Trinidad Villalobos-Gutiérrez Laboratorio de Inmunología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara
Keywords: β-caryophyllene, streptozotocin, hyperglycemia

Abstract

Introducción. El β-cariofileno es un sesquiterpeno bicíclico que se encuentra distribuido en el aceite esencial de varas plantas como clavo de olor, pimienta, orégano, romero y Cannabis sativa. Objetivo. En este trabajo se evaluó el efecto antioxidante del β-cariofileno en un modelo de hiperglicemia inducido por estreptozotocina (STZ). Material y métodos. La hiperglicemia fue inducida a ratones BALB/c por la administración de una dosis única de STZ (160 mg/kg) vía intraperitoneal. Los ratones se dividieron en 4 grupos: el grupo control; el grupo de β-cariofileno; el grupo de STZ y el grupo de STZ mas β-cariofileno, el tratamiento de β-cariofileno se administro una dosis diaria de 10 mg/kg vía oral durante 4 semanas, mientras que al grupo control y el grupo de STZ solo se les administro 150 μl de vehículo. Posterior al tratamiento se determinaron los niveles de glucosa, la actividad de catalasa, los niveles de las sustancias reactivas del ácido tiobarbitúrico (TBARS) y oxido nítrico (NO) en plasma. Resultados. La administración de b-cariofileno mostró un efecto hipoglucemiante disminuyendo significativamente los niveles de glucosa durante el tratamiento acentuándose mas esta disminución en la semana 4. Así mismo, se observó una disminución significativa en los niveles de TBARS y NO en el grupo tratado con b-cariofileno, sin embargo, no se observaron cambios en la actividad de la catalasa (CAT). Conclusión. Estos datos demuestran que el tratamiento con b-cariofileno muestra propiedades hipoglucemiante, así como un efecto antioxidante en un modelo de hiperglicemia inducida por STZ, colocando al b-cariofileno como una alternativa en los trastornos que conlleva la hiperglicemia.

 Introduction. β-caryophyllene is a bicyclic sesquiterpene found in the essential oil of various plants such as cloves, pepper, oregano, rosemary, and Cannabis sativa. Objective. In this work, the antioxidant effect of β-caryophyllene was evaluated in a model of hyperglycemia-induced by streptozotocin (STZ). Material and methods. Hyperglycemia was induced in BALB/c mice by the administration of a single dose of STZ (160 mg/kg) intraperitoneally. The mice were divided into 4 groups: the control group; the β-caryophyllene group; In the STZ group and the STZ group plus β-caryophyllene, the β-caryophyllene treatment was administered a daily dose of 10 mg/kg orally for 4 weeks, while the control group and the STZ group were only administered 150 μL of vehicle. After treatment, glucose levels, catalase activity, TBARS, and nitric oxide (NO) levels in plasma were determined. Results. The administration of b-caryophyllene showed a hypoglycemic effect, significantly decreasing glucose levels during treatment, this decrease being more accentuated in week 4. Likewise, a significant decrease in the levels of TBARS and NO were observed in the group treated with b- caryophyllene, however, no changes were observed in catalase activity. Conclusion. These data show that treatment with b-caryophyllene shows hypoglycemic properties, as well as an antioxidant effect in a model of hyperglycemia-induced by STZ, placing b-caryophyllene as an alternative in the disorders associated with hyperglycemia.

Downloads

Download data is not yet available.

References

1. Akmaev, I. G., & Grinevich, V. V. (2001). From Neuroendocrinology to Neuroimmunoendocrinology. Bulletin of Experimental Biology and Medicine, REVIEWS, 1, 15-23. https://doi.org/10.1023/A:1017566226140
2. Assmann, T. S., Brondani, L. A., Bouças, A. P., Rheinheimer, J., de Souza, B. M., Canani, L. H., Bauer, A. C., & Crispim, D. (2016). Nitric oxide levels in patients with diabetes mellitus: A systematic review and meta-analysis. Nitric oxide : biology and chemistry, 61, 1–9. https://doi.org/10.1016/j.niox.2016.09.009
3. Baldissera, M. D., Souza, C. F., Grando, T. H., Doleski, P. H., Boligon, A. A., Stefani, L. M., & Monteiro, S. G. (2017). Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn-Schmiedeberg's archives of pharmacology, 390(2), 215–223.
4. Basha, R. H., & Sankaranarayanan, C. (2014). β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. Acta histochemica, 116(8), 1469–1479. https://doi.org/10.1016/j.acthis.2014.10.001
5. Basha, R. H., & Sankaranarayanan, C. (2016). β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chemico-biological interactions, 245, 50–58. https://doi.org/10.1016/j.cbi.2015.12.019
6. Bredt, D. S., & Snyder, S. H. (1994). Nitric oxide: a physiologic messenger molecule. Annual review of biochemistry, 63, 175–195. https://doi.org/10.1146/annurev.bi.63.070194.001135
7. Bryan, N. S., & Grisham, M. B. (2007). Methods to detect nitric oxide and its metabolites in biological samples. Free radical biology & medicine, 43(5), 645–657. https://doi.org/10.1016/j.freeradbiomed.2007.04.026
8. Chang, H. J., Kim, J. M., Lee, J. C., Kim, W. K., & Chun, H. S. (2013). Protective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. Journal of medicinal food, 16(6), 471–480. https://doi.org/10.1089/jmf.2012.2283
9. Chatziralli, I. P., Theodossiadis, G., Dimitriadis, P., Charalambidis, M., Agorastos, A., Migkos, Z., Platogiannis, N., Moschos, M. M., Theodossiadis, P., & Keryttopoulos, P. (2017). The Effect of Vitamin E on Oxidative Stress Indicated by Serum Malondialdehyde in Insulin-dependent Type 2 Diabetes Mellitus Patients with Retinopathy. The open ophthalmology journal, 11, 51–58. https://doi.org/10.2174/1874364101711010051
10. Diario Oficial de la Federación, NORMA Oficial Mexicana NOM-062-ZOO1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. 2001. Disponible en: http://publico.senasica.gob.mx/?doc=743. Accesado el 26 de Julio de 2019.
11. Eleazu, C. O., Eleazu, K. C., Chukwuma, S., & Essien, U. N. (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of diabetes and metabolic disorders, 12(1), 60. https://doi.org/10.1186/2251-6581-12-60
12. Hashiesh, H. M., Sharma, C., Goyal, S. N., Sadek, B., Jha, N. K., Kaabi, J. A., & Ojha, S. (2021). A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomedicine & pharmacotherapy, 140, 111639.
13. Henningsson, R., Salehi, A., & Lundquist, I. (2002). Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. American journal of physiology. Cell physiology, 283(1), C296–C304. https://doi.org/10.1152/ajpcell.00537.2001
14. Hosogi, S., Iwasaki, Y., Yamada, T., Komatani-Tamiya, N., Hiramatsu, A., Kohno, Y., Ueda, M., Arimoto, T., & Marunaka, Y. (2008). Effect of inducible nitric oxide synthase on apoptosis in Candida-induced acute lung injury. Biomedical research (Tokyo, Japan), 29(5), 257–266. https://doi.org/10.2220/biomedres.29.257
15. Ibrahim, A., Onyike, E., Nok, A. J., & Umar, I. A. (2017). Combined Effect on Antioxidant Properties of Gymnema Sylvestre and Combretum Micranthum Leaf Extracts and the Relationship to Hypoglycemia. European Scientific Journal, ESJ, 13(36), 266-281. https://doi.org/10.19044/esj.2017.v13n36p266
16. Jekl, V., Hauptman, K., Jeklová, E., & Knotek, Z. (2005). Blood sampling from the cranial vena cava in the Norway rat (Rattus norvegicus). Laboratory animals, 39(2), 236–239. https://doi.org/10.1258/0023677053739774
17. Klauke, A. L., Racz, I., Pradier, B., Markert, A., Zimmer, A. M., Gertsch, J., & Zimmer, A. (2014). The cannabinoid CB₂ receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 24(4), 608–620. https://doi.org/10.1016/j.euroneuro.2013.10.008
18. Lenzen S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226. https://doi.org/10.1007/s00125-007-0886-7
19. Mihailović, M., Arambašić Јovanović, J., Uskoković, A., Grdović, N., Dinić, S., Vidović, S., Poznanović, G., Mujić, I., & Vidaković, M. (2015). Protective Effects of the Mushroom Lactarius deterrimus Extract on Systemic Oxidative Stress and Pancreatic Islets in Streptozotocin-Induced Diabetic Rats. Journal of diabetes research, 2015, 576726. https://doi.org/10.1155/2015/576726
20. Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P., Di Marzo, V., Elphick, M. R., Greasley, P. J., Hansen, H. S., Kunos, G., Mackie, K., Mechoulam, R., & Ross, R. A. (2010). International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacological reviews, 62(4), 588–631. https://doi.org/10.1124/pr.110.003004
21. Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry : IJCB, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0
22. Pieme, C. A., Tatangmo, J. A., Simo, G., Biapa Nya, P. C., Ama Moor, V. J., Moukette Moukette, B., Tankeu Nzufo, F., Njinkio Nono, B. L., & Sobngwi, E. (2017). Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes. BMC research notes, 10(1), 141. https://doi.org/10.1186/s13104-017-2463-6
23. Pinti, M. V., Fink, G. K., Hathaway, Q. A., Durr, A. J., Kunovac, A., & Hollander, J. M. (2019). Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. American journal of physiology. Endocrinology and metabolism, 316(2), E268–E285. https://doi.org/10.1152/ajpendo.00314.2018
24. Renitta, R. E., Narayanan, R., Cypriyana, P. J., V. Samrot, A. V. (2020). Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice. Biocatalysis and agricultural biotechnology, 28, 101763. https://doi.org/10.1016/j.bcab.2020.101763
25. Samarghandian, S., Azimi-Nezhad, M., & Farkhondeh, T. (2017). Catechin Treatment Ameliorates Diabetes and Its Complications in Streptozotocin-Induced Diabetic Rats. Dose-response : a publication of International Hormesis Society, 15(1), 1559325817691158. https://doi.org/10.1177/1559325817691158
26. Scandiffio, R., Geddo, F., Cottone, E., Querio, G., Antoniotti, S., Gallo, M. P., Maffei, M. E., & Bovolin, P. (2020). Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients, 12(11), 3273. https://doi.org/10.3390/nu12113273
27. Sharma, C., Al Kaabi, J. M., Nurulain, S. M., Goyal, S. N., Kamal, M. A., & Ojha, S. (2016). Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Current pharmaceutical design, 22(21), 3237–3264. https://doi.org/10.2174/1381612822666160311115226
28. Spinas G. A. (1999). The Dual Role of Nitric Oxide in Islet beta-Cells. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, 14, 49–54. https://doi.org/10.1152/physiologyonline.1999.14.2.49
29. Suijun, W., Zhen, Y., Ying, G., & Yanfang, W. (2014). A role for trans-caryophyllene in the moderation of insulin secretion. Biochemical and biophysical research communications, 444(4), 451–454. https://doi.org/10.1016/j.bbrc.2013.11.136
30. Surbala, L., Singh, C. B., Devi, R. V., & Singh, O. J. (2020). Rutaecarpine exhibits anti-diabetic potential in high fat diet-multiple low dose streptozotocin induced type 2 diabetic mice and in vitro by modulating hepatic glucose homeostasis. Journal of pharmacological sciences, 143(4), 307–314. https://doi.org/10.1016/j.jphs.2020.04.008
31. Viveros-Paredes, J. M., González-Castañeda, R. E., Gertsch, J., Chaparro-Huerta, V., López-Roa, R. I., Vázquez-Valls, E., Beas-Zarate, C., Camins-Espuny, A., & Flores-Soto, M. E. (2017). Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson's Disease Induced by MPTP. Pharmaceuticals (Basel, Switzerland), 10(3), 60. https://doi.org/10.3390/ph10030060
32. Volpe, C., Villar-Delfino, P. H., Dos Anjos, P., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell death & disease, 9(2), 119. https://doi.org/10.1038/s41419-017-0135-z
33. Yang, P., Cao, Y., & Li, H. (2010). Hyperglycemia induces inducible nitric oxide synthase gene expression and consequent nitrosative stress via c-Jun N-terminal kinase activation. American journal of obstetrics and gynecology, 203(2), 185.e5–185.e11.
34. Youssef, D. A., El-Fayoumi, H. M., & Mahmoud, M. F. (2019). Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors. Biomedicine & pharmacotherapy, 110, 145–154. https://doi.org/10.1016/j.biopha.2018.11.039
Published
2022-02-28
How to Cite
Romero-Hernández, M. de J., Gutiérrez-Coronado, O., Muñoz-Carrillo, J. L., Viveros-Paredes, J. M., & Villalobos-Gutiérrez, P. T. (2022). Evaluacion del β–Cariofileno sobre el estrés oxidativo de ratones BALB/c con hiperglicemia inducida mediante la administración de estreptozotocina. European Scientific Journal, ESJ, 18(8), 112. https://doi.org/10.19044/esj.2022.v18n8p112
Section
ESJ Natural/Life/Medical Sciences