Study of Water Desorption Isotherms from Cocoa Beans (Theobroma Cacao L.) of Cameroon

  • Bidias, J. B Department of Renewable Energy, National Advanced School of Engineering- University of Maroua , Maroua, Cameroon
  • Mouthe Anombogo G. A. Department of Renewable Energy, National Advanced School of Engineering- University of Maroua , Maroua, Cameroon
  • Ndjeumi C. C Department of Renewable Energy, National Advanced School of Engineering- University of Maroua , Maroua, Cameroon
  • Djomdi Djomdi Department of Renewable Energy, National Advanced School of Engineering- University of Maroua , Maroua, Cameroon
  • Tchaya G. B. Department of Renewable Energy, National Advanced School of Engineering- University of Maroua , Maroua, Cameroon
  • Nsouandele J. L Department of Renewable Energy, National Advanced School of Engineering- University of Maroua , Maroua, Cameroon
Keywords: Engineering, Desorption Isotherm, Relative Humidity, Temperature

Abstract

The aim of this work was the determination of desorption isotherms from cocoa beans at different temperatures (20°C, 30°C, 35°C, 40°C and 45°C), moisture ratio (10% and 90%). Gravimetric method and different temperatures were used to get the experimental moisture ratio at equilibrium. Experimental data were adjusted to mathematical isotherm models frequently used for the hygroscopic representation of agricultural products. Cocoa beans varied from 0 to 13% moisture ratio equilibrium. Obtained results showed that the moisture ratio at equilibrium decreases as temperature increases for the same relative humidity. Statistical parameters, modified the Oswin model, GAB, Iglesias Chirife Hasley and Chungs Pfost modified model better represented hygroscopic balance for cocoa beans than Henderson modified and Harkings Jura models. Desorption isotherm models are important for the determination of desorption energy and drying models. The desorption isotherms of cocoa beans were satisfactorily modeled by modified Oswin, GAB, Iglesias, Chirife, Halsey, and modified Chungs Pfost, which can be used as tools in the prediction and optimization of storage conditions in a wide range of water activities and temperatures.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Ahouannou C, Jannot Y, Sanya E & Degan G, (2010). Détermination expérimentale et modélisation des isothermes de désorption de produits agricoles tropicaux, Afrique Science, 6, 1–17.
2. Akmel, C. D.; Kakou, E. K.; Koné, Y. K.; Assidjo, E. N.; Kouamé, P (2015). Desorption Isotherms and Isosteric Heats of Fermented Cocoa Beans (Theobroma Cocoa). Journal of Food Research. 4(3). DOI:10.5539/jfr.v4n3 p138.
3. Akoy E, Von Hörsten D. & Ismail M (2013). Moisture adsorption characteristics of solar-dried mango slices’, International Food Research Journal. 20, (2), 883 - 890.
4. Benhamou A, Kouhila M, Zeghmati B, Benyoucef B. (2010). Modélisation des isothermes de sorption des feuilles de marjolaine. Revue des Energies Renouvelables. 13 (2), 233–247.
5. Bhouri N, Houngan C A, Ben N S, Vianou A, & Perré P,( 2014). Lissage des Isothermes de Sorption d’un Tissu en Coton par la méthode du Simplexe, Revue CAMES Science Appliquée et de l’ l’ingénieur, 1 (1), 13–20.
6. Brou Kouakou J., Bi Zahouli I., Emmanuel Dick, Gnopo Nemlin, Bomisso L. E. (2013). Caractérisation des techniques de séchage du cacao et influence sur la qualité de fèves commercialisées, Journal of Applied Biosciences, 64, 4797 – 4812.
7. Clément Ahouannou, Yves Jannot, Emile Sanya et Gérard Degan (2010). Détermination expérimentale et modélisation des isothermes de désorption de produits agricoles tropicaux, Afrique Science. 6 (3), 1–17.
8. Collazos-Escobar G.A. Gutiérrez-Guzmán N., Váquiro-Herrera H.A., & Amorocho-Cruz C.M. (2020). Water dynamics adsorption properties of dried and roasted cocoabeans (theobroma cacaoL.). International Journal of Food Properties. 23 ( 1), 434–444.
9. Collazos-Escobar, G. A.; Gutiérrez-Guzmán, N.; & Vaquiro, H. H. A. (2019). Modeling Dynamic Adsorption Isothermsand Thermodynamic Properties of Specialty Ground Roasted-coffee (Coffee ArabicaL.).Coffee Science.14–1. DOI:10.25186/cs.v14i1.1532.
10. Domian, E.; Brynda-Kopytowska, A.; Ciesla, J.; & Górska, A. (2018). Effect of Carbohydrate Type on the DVSIsotherm-induced Phase Transitions in Spray-dried Fat-filled Pea Protein-based Powders. Journal of Food Engineering. DOI:10.1016/j.jfoodeng. 2017. 11.012.
11. Harking W. & Jura G. (1944). Surfaces of solids. XIII, A vapor method for the determination of the area of a sol id without the assumption of a molecular area, and they are as occupied by nitrogen and other molecules on the surface of a solid, Journal of the American Chemical Society. 66, 1366-1381.
12. Henderson S. M. (1952) A basic concept of equilibrium moisture, Agricultural Engineering 33, 29-32.
13. Iglisias H M et Chirife J.(1976). Prediction of the effect of temperature on water sorption isotherms of food material, International Journal of Food Science & Technology, 11, 109-116.
14. Kakou Kouassi E, Akmel Djédjro C, Abouo N’Guessan V, Assidjo Nogbou E, Niamké Lamine S(2015). Isotherme d’adsorption d’eau des fèves de cacao (Theobroma Cacao L.) marchand, European Scientific Journal, 11 (12), 355–370.
15. Kamenan Blaise Koua, Ekoun Paul Magloire, Prosper Gbaha (2017). Séchage des fèves de cacao dans un séchoir solaire indirect à circulation forcée d’air, Revue CAMES Science Appliquée et de l’ l’ingénieur, 2(2), 15–19.
16. Koua K B , Koffi E P M, Gbaha P and Toure S, (2014). Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta). Journal of Food Science & Technology. 51(9), 1711–1723.
17. Kouhila M, Belghit A, Daguenet M, & Boutaleb B C (2001). Experimental determination of the sorption isotherms of mint (Mentha viridis), sage (Salvia officinalis) and verbena (Lippia citriodora). Journal of Food Engineering. 47, 281-287.
18. Kouhila M., Kechaou N., Otmani M., Fliyou M. & Lahsasni S. (2002). Experimental Study of Sorption Isotherms and Drying Kinetics of Moroccan Eucalyptus Globulus, Drying Technology. 20, 2027-2039.
19. Martínez-Las Heras, R. A.; Heredia, M. L.; & Castelló, A. A. (2014). Moisture Sorption Isotherms and Isosteric Heat of Sorption of Dry Persimmon, Food Bioscience. 7, 88–94. DOI:10.1016/j.fbio.2014.06.002.
20. Medeiros M L, Ayrosa A M I B, Pitombo R N M & Lannes S C S (2006). Sorption isotherms of cocoa and cupuassu products, Journal of Food Engineering. 73, 402-406.
21. Mousa, W.; Ghazali, M. F.; Jinap, S.; Ghazali, M. H.; & Radu, S. (2012). Sorption Isotherms and Isosteric Heats ofSorption of Malaysian Paddy. Journal of Food Science and Technology. DOI:10.1007/s13197-012-0799-4.
22. Nkouan B G (2007). Conservation des fruits du karate (Vitellaria paradoxa Gaertn.) et de l’aiélé (Canarium scheweinfurthii Engl.) : isothermes de sorption d’eau et extraction des matières grasses stockés, Thesis University of Ngaoundéré; 207.
23. Nsouandélé J L, Tamba J G & Bonoma B. (2018). Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon, Heat and Mass Transfer; 54, 3089–3096.
24. Oliveira G H H, Corrêa P C, Santos E S, Treto P C and Diniz M D M. (2011). Evaluation of Thermodynamic properties using GAB model to describe the desorption process of cocoa beans. International Journal of Food Science & Technology, 46, 2077-2084.
25. Oswin C. R.(1946). The kinetic of package life III. The Isotherm, Journal of the Society of Chemical Industry .65, 419-421.
26. Pfost H B, Maurer S G., Chung D S & Milliken G A (1976). Summarizing and reporting equilibrium moisture data for grains, Transactions of American Society of Agricultural Engineers. 76, 3520-3532.
27. Prette A P, Almeida F A C & Villa-Vélez A (2013). Thermodynamic properties of water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Food Science and Technology. 33(1), 199-208.
28. Simo-Tagne M., Zoulalian A., Rogaume Y., Rémond R. et Bonoma B. (2016). Modélisation des isothermes de sorption, caractérisation des propriétés thermodynamiques et détermination des humidités d’équilibre d’usage des bois tropicaux, Revue des Energies Renouvelables. 19 (1), 79 – 96.
29. Trignan J. (1991). Probabilités statistiques et leurs applications, Breal.
30. Wolf W., Speiss W. E. L. & Jung G. (1985). Standardization of Isotherm measurements. In Properties of Water in Foods, (D. Simatos and J. L. Multon, eds.), Martinus Nijhoff pub., Nertherlands. 661-679.
Published
2022-03-31
How to Cite
J. B, B., Anombogo G. A., M., C. C, N., Djomdi, D., G. B., T., & J. L, N. (2022). Study of Water Desorption Isotherms from Cocoa Beans (Theobroma Cacao L.) of Cameroon. European Scientific Journal, ESJ, 18(11), 1. https://doi.org/10.19044/esj.2022.v18n11p1
Section
ESJ Natural/Life/Medical Sciences