Effet comparé de la fertilisation à base de biochar, engrais organique et engrais chimique sur les éléments minéraux et la production de l’oignon (Allium cepa L.)
Abstract
Au cours des dernières décennies, il y a de plus en plus des études universitaires sur l'importance du biochar. Ce dernier constitue un moyen efficace pour la valorisation des déchets agricoles et forestiers. Cette étude qui s’inscrit dans le même contexte a pour objectif principal de déterminer les effets combinés du fumier de chèvre (FC, 5 t ha-1) et de son biochar (BC 10 t ha-1) sur l'efficacité d'utilisation des engrais chimiques (EC) sous différents ratios (100%, 50% et 0%), avec la variété d’oignon Metan 88. Pour ce faire, des essais ont été conduits en plein champ, dans le Centre de Recherche Horticole (CRH Ayas) de l’Université d'Ankara. En effet, le dispositif expérimental est un bloc complet randomisé comportant douze (12) traitements en quatre (4) répétitions, soit quarante-huit (48) parcelles. Les différentes mesures et analyses effectuées ont permis la détermination des paramètres tels que ; le poids frais et sec, le rendement total, la chlorophylle relative, l’acide ascorbique, ainsi que les concentrations des N, P, K, Ca, Mg, Fe, Zn, Cu et Mn. Les résultats obtenus ont montré que le rendement total de l'oignon a augmenté de manière significative avec l'application du biochar, du fumier ainsi que leur combinaison. Tous les traitements d'engrais organiques et inorganiques ont considérablement augmenté les concentrations en N, P et K respectivement 38,8, 2,81 et 42,2 g Kg-1 par rapport aux témoins 33,8, 2,32 et 35,6 g Kg-1. Les concentrations en Ca et Mg respectivement 7,31 et 6,69 g kg-1 ont été augmentées avec l'engrais organique par rapport aux témoins 6,43 et 5,10 g kg-1. Le Biochar et le fumier ont donné la concentration la plus élevée de chlorophylle relative avec 297 et 294 respectivement. En conclusion , la combinaison du BC+FC a permis d’obtenir une croissance optimale de l’oignon.
In recent decades, numerous academic studies were carried out in order to determine the importance of biochar. The latter constitutes an effective means for valuing the agricultural and forestry waste. The main objective of the present study was to determine the combined effects of goat manure (GM, 5 t ha-1) and its biochar (BC 10 t ha-1) on use efficiency of chemical fertilizers (CF) in different ratios (100%, 50% and 0%), in the Metan 88 variety of onion. The , trials were carried out in the open field at the Horticultural Research Center at Ankara University. The experimental device is a complete randomized block comprising twelve (12) treatments in four (4) repetitions, forty-eight (48) plots. The various measurements and analyses carried out allowed the determination of parameters such as fresh and dry weight, total yield, relative chlorophyll, ascorbic acid, the concentrations of N, P, K, Ca, Mg, Fe, Zn, Cu and Mn, as well . The obtained results showed that the total yield of onion increased significantly with biochar, manure as well as their combination. All organic and inorganic fertilizer treatments significantly increased N, P and K concentrations 38.8, 2.81 and 42.2 g Kg-1 respectively compared to controls 33.8, 2.32 and 35, 6g Kg-1. As for the concentrations of Ca and Mg 7.31 and 6.69 g kg-1 they were increased with the organic fertilizer compared to the controls 6.43 and 5.10 g kg-1 respectively.. Biochar and manure gave the highest concentration of relative chlorophyll with 297 and 294 respectively. Inconclusion , the combination of BC + CF resulted in optimal onion growth.
Downloads
Metrics
PlumX Statistics
References
2. Biederman, L. A., Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5, 202-214.
3. Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A., Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching a greenhouse experiment. Soil Use and Management, 28, 177-184.
4. Chirenje, T., Ma, L. Q. 2002. Impact of high-volume wood-fired boiler ash amendment on soil properties and nutrients. Commun Soil Sci Plant Anal., 33, 1-17.
5. Deluca, T. H., MacKenzie, M. D., Gundale, M. J. (2009). Biochar effects on soil nutrient transformations. pp. 251-270. In Lehmann, J., Joseph, S. (eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, UK.
6. Dong, X., Ma, L. Q., Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190, 909-915.
7. Eraslan, F., Inal, A., Gunes, A., Erdal, I., Coskan, A. (2010). Türkiye’de kimyasal gübre üretim ve tüketim durumu, sorunlar, çözüm önerileri ve yenilikler. TMMOB Ziraat Mühendisleri Odası, Ziraat Mühendisliği VII. Teknik Kongresi, 11-15 Ocak 2010, Ankara.
8. Fearnside, P. M. (2000). Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46(1-2), 115-158.
9. Gunes, A. (2012). Technical assistance for the implementation of nitrate directive. Task 6: Prepare an Action Plan for Nitrate Directive. Output 6.2. Draft Manure Management Plan. Vakakis International S.A. Athens, Greece.
10. Gunes A., Inal A., Taskin, M. B., Sahin O., Kaya E. C., Atakol A. (2014). Effect of phosphorus enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30, 182-184.
11. Gunes, A., Inal, A., Sahin, O., Taskin, M. B., Atakol, O., Yılmaz, N. (2015). Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use and Management, 31, 429-437.
12. Hansen, V., Hauggaard-Nielsen, H., Petersen, C. T., Mikkelsen, T. N., & Müller-Stöver, D. (2016). Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil and Tillage Research, 161, 1-9.
13. Inal, A., Gunes, A., Sahin, O., Taskin, M. B., Kaya, E. C. (2015). Impacts of biochar and processed poultry manure, applied to a calcareous soil on the growth of bean and maize. Soil Use and Management 31, 106-113.
14. Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., Murphy, D.V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil biology and Biochemistry, 45, 113-124.
15. Kamman, C. I., Linsel, S., Gossling, J. W., Koyro, H. W. (2011). Influence of biochar on drought tolerance of chenopodium quinoa willd and on soil-plant relations. Plant and Soil, 195-210.
16. Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass (Lolium perenne). J. Hazard. Mater,191, 41-48.
17. Kookana, R., Sarmah, A. K., Van Zwieten, L., Singh, B. (2011). Biochar application to soil: Agronomic and environment benefits and unintended consequences. Advance in Agronomy. 112:103-143.
18. Lehmann, J., Gaunt, J., Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems - A review. Mitig. Adapt. Strateg. Glob. Change, 11(2), 403-427.
19. Lehmann, J. (2007). Bio-Energy in the black. Frontiers in Ecology and the Environment, 5, 381-387.
20. Lehmann, J., Rilling M. C., Thies, J., Masiello, C. A., Hockaday, W. C., Crowley, D. (2011). Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 43, 1812-1836.
21. Lentz, R. D., and Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41(4), 1033-1043.
22. Major, J., Rondon, M., Molina, D., Riha, S. J., Lehmann, J. (2010). Maize yield and nutrition after 4 years of doing biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117-128.
23. Mandal, B., Hazra, G. C., & Pal, A. K. (1988). Transformation of zinc in soils under submerged conditions and its relation with zinc nutrition of rice. Plant and Soil, 106, 121-126.
24. Mielki, G. F., Novais, R. F., Ker C., Vergütz, L. & Castro, G. F. (2016). Iron availability in tropical soils and iron uptake by plants. Revista Brasileira de Ciencia do Solo, 40, 1-14.
25. Najafi-Ghiri, M., Razeghizadeh, T., Taghizadeh, M. S., & Boostani, H. R. (2019). Effect of sheep manure and its produced vermicompost and biochar on the properties of a calcareous soil after barley harvest. Communications in Soil Science and Plant Analysis, 50(20), 2610-2625.
26. Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439-451.
27. Rees F., Simonnot, M. O., Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65, 149-161.
28. Sahin, O., Taskin, M. B., Kaya, E. C., Atakol, O., Emir, E., Inal, A., & Gunes, A. (2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33(3), 447-456.
29. Salmani, M. S., Khorsandi, F., Yasrebi, J., Karimian, N. (2014). Biochar effects on copper availability and uptake by sunflower in a copper contaminated calcareous soil. International journal of plant, Animal and Environmental Sciences, 4, 389-294.
30. Sarmento, J. A., Costa, C. C., Dantas, M. V., Lopes, K. P., De Macedo, I. C., Bomfim, M. P., Barbosa Da, W. S. (2019). Productivity of lettuce under organic fertilization. Journal of Agricultural Science, 11(1), 333-343.
31. Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82.
32. Schomberg, H. H., Gaskin, J. W., Harris, K., Das, K. C., Novak, J. M., Busscher, W. J., Watts, D. W., Woodroof, R. H., Lima, I. M., Ahmedna, M., Rehrah, D., Xing, B. S. (2012). Influence of biochar on nitrogen fractions in a coastal plain soil. Journal of Environmental Quality, 41(4), 1087-1095.
33. Smith, J.H., (1999). The Amazon River Forest: A Natural History of Plants, Animals and People. Oxford University Press, New York.
34. Spokas, K. A., Novak, J. M., Venterea, R. T. (2012). Biochar's role as an alternative N-fertilizer: ammonia capture. Plant and Soil, 350, 35-42.
35. Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205-212.
36. Verheijen, F., Jefferey, S., Bastos, A. C., Velde, M., Diafas, I. (2010). Biochar application to soils - A critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxembourg.
37. Wang, T., Arbestan, M. C., Hedley, M., Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357, 173-187.
38. Wang, L., Xue C., Nie, X., Liu, Y., Chen F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci., 181, 635-643.
39. Zhou, D., Liu, D., Gao, F., Li, M., Luo, X. (2017). Effects of biochar-derived sewage sludge on heavy metal adsorption and ımmobilization in soils. International Journal of Environmental Research and Public Health, 14(7), 681-696.
Copyright (c) 2022 Moustapha Maman Mounirou
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.