Sensibilité des Populations D’Aedes Aegypti des Zones Héveicoles de Dabou (Sud de la Côte d’Ivoire) aux Organophosphorés, aux Pyréthrinoïdes et au Bacillus Thuringiensis Israelensis

  • Traore Issouf Institut Pasteur of Côte d’Ivoire, Unité d’entomologie et d’herpétologie Université Félix Houphouët-Boigny, UFR Biosciences
  • Coulibaly Zanakoungo Ibrahima Institut Pasteur of Côte d’Ivoire, Unité d’entomologie et d’herpétologie
  • Konan Yao Lucien Institut National d’Hygiène Publique, Service de Paludologie, Côte d’Ivoire
  • Allali Kouadio Bernard Institut Pasteur of Côte d’Ivoire, Unité d’entomologie et d’herpétologie
  • Yapi Ahoua Université Félix Houphouët-Boigny, UFR Biosciences, Côte d’Ivoire
  • Mireille Dosso Institut Pasteur of Côte d’Ivoire, Unité d’entomologie et d’herpétologie
Keywords: Arbovirus; Aedes aegypti; changement environnemental anthropique; larvicides; adulticides

Abstract

L’expansion de l’hévéaculture entraine une forte modification de l’environnement en Côte d’Ivoire. Aussi, plusieurs épidémies de dengue et de fièvre jaune dues Aedes aegypti ont récemment été observées en Côte d’Ivoire. Le profil de sensibilité aux insecticides d’Aedes aegypti dans ces zones d’agriculture de masse nécessitant une main d’œuvre importante est mal connu. Cette étude a établi le profil de sensibilité d’Aedes aegypti dans les zones de cultures d’hévéa de Dabou afin de mieux planifier les mesures de lutte contre le vecteur majeur des d’arbovirus. Des larves d'Aedes aegypti ont été échantillonnées en janvier 2018 dans des plantations immatures et matures d’hévéa, ainsi que dans les villages environnants aux plantations d’hévéa dans le département de Dabou. Des tests larvicides (Bacillus thuringiensis israelensis et téméphos) et adulticides (chlorpyriphos-méthyl 0.8%, malathion 0,1% et Fenitrithion 0,1%, perméthrine 0,75%, deltaméthrine 0,05%, lambdacyahalothrine 0,05%) en tube sur les générations F1 ont été réalisés conformément aux directives de l'Organisation Mondiale de la Santé (OMS). Les 3743 larves d’Aedes aegypti testées ont été toutes sensibles aux deux larvicides avec des LC50 comprises entre 7.10-3 mg/L et 9.10-3 mg/L pour le Bacillus thuringiensis israelensis et entre 6,5.10-2 mg/L et 1,2.10-1 mg/L pour le téméphos. Les LC95 respectives étaient comprises entre 2,1.10-2 mg/L et 2,4.10-2 mg/L et entre 6,5.10-2 mg/L et 1,2.10-1 mg/L. Aussi, 2400 Aedes aegypti adultes testés ont été tous sensibles aux organophosphorés (chlorpyriphos-méthyl 0.8%, malathion 0,1% et fenitrithion 0,1%) avec des mortalités comprises entre 98% et 100% et aux pyréthrinoïdes (perméthrine 0,75%, deltaméthrine 0,05%, lambdacyahalothrine 0,05%) avec des mortalités de 100%. L’étude a montré que les populations immatures et adultes d’Aedes aegypti des plantations d’hévéa et les villages environnants de la zone d’étude étaient sensibles au Bacillus thuringiensis israelensis, aux organophosphorés et aux pyréthrinoïdes.

The expansion of rubber cultivation is leading to a strong modification of the environment in Côte d'Ivoire. As a result, several outbreaks of dengue and yellow fever caused by Aedes aegypti have recently been observed in Côte d'Ivoire. The insecticide susceptibility profile of Aedes aegypti in these labourintensive mass farming areas is poorly known. This study established the susceptibility profile of Aedes aegypti in the rubber growing areas of Dabou in order to better plan control measures against the major arbovirus vector. Aedes aegypti larvae were sampled in January 2018 in immature and mature rubber plantations, as well as in the villages surrounding the rubber plantations in the Dabou department. Larvicidal (Bacillus thuringiensis israelensis and temephos) and adulticidal (chlorpyriphos-methyl 0.8%, malathion 0.1% and Fenitrithion 0.1%, permethrin 0.75%, deltamethrin 0.05%, lambdacyahalothrin 0.05%) tube tests on F1 generations were carried out in accordance with the World Health Organization (WHO) guidelines. All 3743 Aedes aegypti larvae tested were sensitive to both larvicides with LC50 ranging from 7.10-3 mg/L to 9.10-3 mg/L for Bacillus thuringiensis israelensis and from 6.5.10-2 mg/L to 1.2.10-1 mg/L for temephos. The respective LC95 were between 2.1.10-2 mg/L and 2.4.10-2 mg/L and between 6.5.10-2 mg/L and 1.2.10-1 mg/L. Also, 2400 adult Aedes aegypti tested were all sensitive to organophosphates (chlorpyrifos-methyl 0.8%, malathion 0.1% and fenitrithion 0.1%) with mortalities between 98% and 100% and to pyrethroids (permethrin 0.75%, deltamethrin 0.05%, lambdacyahalothrin 0.05%) with mortalities of 100%. The study showed that immature and adult populations of Aedes aegypti in rubber plantations and surrounding villages in the study area were susceptible to Bacillus thuringiensis israelensis, organophosphates and pyrethroids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Albrieu L. G., Seccacini, E., Gardenal, C. N., & Licastro, S. (2010). Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Memorias Do Instituto Oswaldo Cruz, 105(1), 113–116. https://doi.org/10.1590/s0074-02762010000100019
2. Anges, Y., Jean-Robert, K., Christophe, C., Ramziyath, A., Carine, T., Achaz, A., Roland, T., & Lamine, B.-M. (2018). Sensibilité des populations d’ Aedes Aegypti vis-à-vis des organochlorés, pyréthrinoïdes et des carbamates dans la commune de Natitingou au Nord-Est du Bénin. European Scientific Journal, ESJ, 14(33), 134. https://doi.org/10.19044/esj.2018.v14n33p134
3. Association des Professionnels du Caoutchouc Naturel de Côte d’Ivoire (APROMAC). (2019). No Title. Koaci.Com. https://www.goafricaonline.com/en/ci/71004%0A
4. Bajjou, T., Akhouad, Y., Hilali, F., Elkochri, S., Laraqui, A., Touil, N., Lahlou Amine, I., Mahassine, F., & Sekhsokh, Y. (2018). Dengue fever in Morocco: result of surveillance during the year 2017 and first imported cases. International Journal of Research in Medical Sciences, 6(3), 1029. https://doi.org/10.18203/2320-6012.ijrms20180633
5. Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., Moyes, C. L., Farlow, A. W., Scott, T. W., & Hay, S. I. (2012). Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Tropical Diseases, 6(8). https://doi.org/10.1371/journal.pntd.0001760
6. Chandre, F., Manguin, S., & Brengues, C. (1999). Pyrethroid cross-resistance spectrum among populations of Anopheles. April.
7. Chareonviriyahpap, T., Aum-aung, B., & Ratanatham, S. (1999). Insecticide resistance in vectors. In Southeast Asian J Trop Med Public Health (Vol. 30, Issue March). http://www.thaiscience.info/Journals/Article/TMPH/10716614.pdf
8. Chen, C. D., Nazni, W. A., Lee, H. L., & Sofian-Azirun, M. (2005). Susceptibility of Aedes aegypti and Aedes albopictus to temephos in four study sites in Kuala Lumpur City Center and Selangor State, Malaysia. Tropical Biomedicine, 22(2), 207–216.
9. Coulibaly, Z. I. (2015). Evaluation du risque entomologique d’emergence du virus chikungunya dans le district d’abidjan (cote d’ivoire) de 2008 a 2010. Thèse Doc. Univ. Nangui Abrogoua : 156 p.
10. Fofana, D., Beugré, J. M. V., Yao-Acapovi, G. L., & Lendzele, S. S. (2019). Risk of dengue transmission in cocody (Abidjan, ivory coast). Journal of Parasitology Research, 2019. https://doi.org/10.1155/2019/4914137
11. Fontenille, D. (2003). Rapport Sur Le Controle Des Vecteurs Des Virus Dengue Dans Les Aeroports Et Aeronefs. 33(0).
12. Goindin, D. (2016). Etude des résistances aux insecticides et des réponses biologiques aux changements climatiques du moustique Aedes aegypti, vecteur de la Dengue, du Chikungunya et du Zika en Guadeloupe. 228.
13. Golding, N., Nunn, M. A., & Purse, B. V. (2015). Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites & Vectors, 1–10. https://doi.org/10.1186/s13071-015-0915-1
14. Guindo, C. N. E. (2012). Biologie,écologie et sensibilité aux insecticides de populations naturelle de formes larvaires marron et blanche de Aedes (stegomyia) aegypti LINNAEUS (1762), vecteur majeur de la fièvre jaune, en différents sites de la ville d’Abidjan (Côte d’Ivoire). In Angewandte Chemie International Edition, 6(11), 951–952.
15. Institut National de statistique (I.N.S). (2015). Result of the general population and housing census of Côte d’Ivoire in 2014. WWW.ins.ci.
16. Kamgang, B., Marcombe, S., Chandre, F., Nchoutpouen, E., Nwane, P., Etang, J., Corbel, V., & Paupy, C. (2011). Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasites and Vectors, 4(1), 79. https://doi.org/10.1186/1756-3305-4-79
17. Kamgang, B., Wilson-Bahun, T. A., Yougang, A. P., Lenga, A., & Wondji, C. S. (2020). Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infectious Diseases of Poverty, 9(1), 1–10. https://doi.org/10.1186/s40249-020-0637-2
18. Konan, L. Y., Oumbouke, W. A., Silué, U. G., Coulibaly, I. Z., Ziogba, J. C. T., N’Guessan, R. K., Coulibaly, D., Bénié, J. B. V., & Lenhart, A. (2021). Insecticide Resistance Patterns and Mechanisms in Aedes aegypti (Diptera: Culicidae) Populations across Abidjan, Côte d’Ivoire Reveal Emergent Pyrethroid Resistance. Journal of Medical Entomology, 58(4), 1808–1816. https://doi.org/10.1093/jme/tjab045
19. Kouadio, Y. K., Ochou, D. A., & Servain, J. (2003). Tropical Atlantic and rainfall variability in Côte d’Ivoire. Geophysical Research Letters, 30(5), 3–6. https://doi.org/10.1029/2002GL015290
20. L’Azou, M., Succo, T., Kamagaté, M., Ouattara, A., Gilbernair, E., Adjogoua, E., & Luxemburger, C. (2015). Dengue: Etiology of acute febrile illness in Abidjan, Côte d’Ivoire, in 2011-2012. Transactions of the Royal Society of Tropical Medicine and Hygiene, 109(11), 717–722. https://doi.org/10.1093/trstmh/trv076
21. Macoris, M. D. L. G., Andrighetti, M. T. M., Takaku, L., Glasser, C. M., Garbeloto, V. C., & Bracco, J. E. (2003). Resistance of Aedes aegypti from the State of São Paulo, Brazil, to Organophosphates Insecticides. Memorias Do Instituto Oswaldo Cruz, 98(5), 703–708. https://doi.org/10.1590/S0074-02762003000500020
22. Melo-Santos, M. A. V., Varjal-Melo, J. J. M., Araújo, A. P., Gomes, T. C. S., Paiva, M. H. S., Regis, L. N., Furtado, A. F., Magalhaes, T., Macoris, M. L. G., Andrighetti, M. T. M., & Ayres, C. F. J. (2010). Resistance to the organophosphate temephos: Mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica, 113(2), 180–189. https://doi.org/10.1016/j.actatropica.2009.10.015
23. Nazni, W. A, Kamaludin, M. Y, Lee, H. L, T. Rogayah, T. A. R, Sa’diyah, I. (2000). Oxidase activity in relation to insecticide resistance in vectors of public health importance. Tropical Biomedicine, Vol.17 No.(ref.17), pp.69-79.
24. Ngugi, H. N., Mutuku, F. M., Ndenga, B. A., Musunzaji, P. S., Mbakaya, J. O., Aswani, P., Irungu, L. W., Mukoko, D., Vulule, J., Kitron, U., & LaBeaud, A. D. (2017). Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasites and Vectors, 10(1), 1–12. https://doi.org/10.1186/s13071-017-2271-9
25. Organisation mondiale de la santé (OMS). (2016). Surveillance et gestion de la résistance aux insecticides dans les populations de moustiques Aedes. Who, 16(10665), 7. https://apps.who.int/iris/handle/10665/204588
26. Organisation Mondial de la Santé (OMS). (2017). Stratégie mondiale pour l'élimination des épidémies de fièvre jaune.
27. Paeporn, P., Komalamisra, N., & Eshita, Y. (2004). Temephos resistance in two forms of aedes aegypti and its significance for the resistance mechanism. The Southeast Asian journal of tropical medicine and public health · January 2004
28. Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., Fefferman, N., Gaff, H., Gumel, A., Ladeau, S., Lenhart, S., Mickens, R. E., Naumova, E. N., Ostfeld, R. S., Ready, P. D., Thomas, M. B., Velasco-Hernandez, J., & Michael, E. (2015). Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 1–17. https://doi.org/10.1098/rstb.2013.0551
29. Paris, M., Tetreau, G., Laurent, F., Lelu, M., Despres, L., & David, J. P. (2011). Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Management Science, 67(1), 122–128. https://doi.org/10.1002/ps.2046
30. Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., Wolfe, N. D., Kilpatrick, A. M., Foufopoulos, J., Molyneux, D., Bradley, D. J., Amerasinghe, F. P., Ashford, R. W., Barthelemy, D., Bos, R., Bradley, D. J., Buck, A., Butler, C., Chivian, E. S., … Zakarov, V. (2004). Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112(10), 1092–1098. https://doi.org/10.1289/ehp.6877
31. Patz, J. A., Olson, S. H., Uejio, C. K., & Gibbs, H. K. (2008). Disease Emergence from Global Climate and Land Use Change. Medical Clinics of North America, 92(6), 1473–1491. https://doi.org/10.1016/j.mcna.2008.07.007
32. Paul, A., Harrington, L. C., Zhang, L., & Scott, J. G. (2005). Insecticide resistance in Culex pipiens from New York. Journal of the American Mosquito Control Association, 21(3), 305–309. https://doi.org/10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2
33. Polson, K. a, Curtis, C., Seng, C. M., Olson, J. G., & Rawlins, S. C. (2001). Susceptibility of Two Cambodian Populations of Aedes aegypti Mosquito Larvae to Temephos During 2001. Dengue Bulletin, 25, 79–84.
34. Ponlawat, A., Scott, J. G., & Harrington, L. C. (2005). Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. Journal of Medical Entomology, 42(5), 821–825. https://doi.org/10.1093/jmedent/42.5.821
35. Rochlin, I., Turbow, D., Gomez, F., Ninivaggi, D. V., & Campbell, S. R. (2011). Predictive mapping of human risk for west nile virus (WNV) based on environmental and socioeconomic factors. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0023280
36. Ruaux, N. (2018). Résistances et méthodes alternatives. anses-01802740
37. Serrato, I. M., Caicedo, P. A., Orobio, Y., Lowenberger, C., & Ocampo, C. B. (2017). Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= Aedes aegypti). Medical and Veterinary Entomology, 31(3), 312–319. https://doi.org/10.1111/mve.12237
38. Tangena, J.-A. A., Thammavong, P., Wilson, A. L., Brey, P. T., & Lindsay, S. W. (2017). Risk and Control of Mosquito-Borne Diseases in Southeast Asian Rubber Plantations. Trends in Parasitology, 32(5), 402–415. https://doi.org/10.1016/j.pt.2016.01.009
39. Tantely, M. L., Le Goff, G., Boyer, S., Fontenille, D. (2016). An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar. Parasite, 23(), 20–. doi:10.1051/parasite/2016018
40. Valles, S. M., Koehler, P. G., & Brenner, R. J. (1997). Antagonism of Fipronil Toxicity by Piperonyl Butoxide and S,S,S-Tributyl Phosphorotrithioate in the German Cockroach (Dictyoptera: Blattellidae). Journal of Economic Entomology, 90(5), 1254–1258. https://doi.org/10.1093/jee/90.5.1254
41. Yadouleton, A., Tchibozo, C., Azondekon, R., Ahissou, F., Houndeton, G., Sidick, A., Gbaguidi, F., & Akogbeto, M. (2018). Pyrethroid resistance in Aedes aegypti populations in southern Benin , West Africa. International Journal of Mosquito Research, 5(3), 17–20.
Published
2022-08-31
How to Cite
Issouf, T., Ibrahima, C. Z., Lucien, K. Y., Bernard, A. K., Ahoua, Y., & Dosso, M. (2022). Sensibilité des Populations D’Aedes Aegypti des Zones Héveicoles de Dabou (Sud de la Côte d’Ivoire) aux Organophosphorés, aux Pyréthrinoïdes et au Bacillus Thuringiensis Israelensis. European Scientific Journal, ESJ, 18(27), 31. https://doi.org/10.19044/esj.2022.v18n27p31
Section
ESJ Natural/Life/Medical Sciences