Amino Acids Profile of Five Leafy Vegetables Mainly Consumed in Western Côte d’Ivoire

  • Zoro Armel Fabrice Laboratory of Biotechnology and Valorization of Agroresources and Natural Substances, Faculty of Biological Sciences, Peleforo Gon Coulibaly University, Korhogo, Côte d’Ivoire
  • Toure Abdoulaye Laboratory of Biotechnology and Valorization of Agroresources and Natural Substances, Faculty of Biological Sciences, Peleforo Gon Coulibaly University, Korhogo, Côte d’Ivoire
  • Kouassi Kouamé Appolinaire Laboratory of Biotechnology and Valorization of Agroresources and Natural Substances, Faculty of Biological Sciences, Peleforo Gon Coulibaly University, Korhogo, Côte d’Ivoire
Keywords: Leafy vegetables, amino acids, nutritional quality, food security

Abstract

In tropical Africa, leafy vegetables are traditionally cooked and eaten as a relish together with a starchy staple food. To contribute to their wider utilization and valorization in food sector, five leafy vegetables consumed in Western Côte d’Ivoire were investigated for their amino acids composition. The leaves of Abelmoschus esculentus, Celosia argentea, Ipomea batatas, Manihot esculenta and Myrianthus arboreus were the five leafy vegetables studied. The samples of these five leafy vegetables in this study were collected at maturity in cultivated farmlands located at Dabou (Southern Côte d’Ivoire). Then, they were washed and oven dried at 60 °C during three days before ground. The amino acid content of the ground samples were analyzed by high performance liquid chromatography (HPLC) technical. The results were showed a significantly different (p ˂ 0.05) between amino acids contents of the five leafy vegetables. For a non-essential amino acids, all the five leaves studied were contained only proline with concentrations varying from 563.6 ± 1.08 to 1562.9 ± 1.88 mg/100 g. The two(2) other non-essential amino acids, arginine and tyrosine were detected only in leaves of C. argentea (1370.6 mg/100mg) and A. esculentus (1.70 mg/100mg) respectively. Concerning essential amino acids, only leucine was contained in all leafy vegetables with contents between 175.9 ± 0.56 and 9685.9 ± 5.14 mg/100 g. For the other essential amino acids, lysine was contained in leaves of C. argentea, I. batatas and M. arboreus with respectives concentrations of 266.7 ± 0.89 mg/100 g, 7225.9 ± 2.56 mg/100 g and 182.4 ± 0.66 mg/100 g. Tryptophane was quantified in leaves of A. esculentus and I. batatas with respectives levels of 1205.4 ± 1.86 mg/100g and 175.4 ± 0.84 mg/100g. Valine was detected in leaves of C. argentea and M. esculenta with respectives contents of 1069.4 ± 1.21 mg/100g and 1639.1 ± 1.39 mg/100g. Methionine was contained in leaf of C. argentea with level of 165.1 ± 0.61 mg/100g. The important concentration of amino acids revealed in leaves studied clearly would justify their consumption by Western Côte d’Ivoire populations. Therefore, exploitation of leafy vegetables could contribute food security of ivorian population.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Aïda D., Mama S., Manuel D., Mady C., Max R. (2006). Le baobab africain (Adansonia digitataL.) : principales caractéristiques et utilisations. Fruits, 61(1): 55-69.
2. Arnould S. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2) : 89-97. 3. Boisseau. N. (2005). Nutrition et bioénergétique du sportif. Ed Masson. pp 9-148.
4. Bresssani R. (1975). Legumes in human diet and how they might be improved. In polyphenols in cereals and legumes: Ed, Milner: IDRE, Ottawa, Canada. Conference. Washington, D.C: IFPRI,p100.
5. Chinma, C.E. and M.A. Igyor, (2007). Micro-nutriments and anti-nutritional content of select tropical vegetables grown in south-east, Nigeria. Nig. Food J., 25: 111-115.
6. Couplan F. (2012). Lettre d’information n°8. 10p. 7. Cynober L. (2001). Les pharmaconutriments azotés : du laboratoire au lit du malade. Nutr. Clin. Metabol., 15: 131-143
8. Foidl N., Makkar H.P.S. et Becker K. (2001). Potentiel de développement des produits du Moringa 29 octobre - 2 novembre 2001, Dar es Salaam, Tanzanie. 20p.
9. Fowden L. (1978). Non-protein nitrogen compounds : toxicity and antagonistic action in relation to amino protein synthesis. In : NORTON G., ed. Plant proteins. London, Butterworths, 109-115.
10. Fuglie L.J. (2002). Le Moringa dans la médecine traditionnelle (141-148) In: L’arbre de la vie, Les multiples usages du Moringa.-Wageningen : CTA; Dakar: CWS.-177p.
11. Hernández-orte P., Guitart A. et Cacho J. (1999). Changes in the concentration of amino acids during the ripening of Vitis viniferaTempranillo variety from the Denomination d’Origine Somontano (Spain). Am. J. Enol. Vitic., 50: 144-154.
12. HSIAO T.C., (1973). Plant responses to water stress. Annu. Rev. Plant Physiol., 24, 519-570.
13. INRA (2012). L’avenir des légumineuses dans l’alimentation humaine. 22p.
14. Laleg K., Barron C., Santé-Lhoutellier V., Walrand S. and Micard V. (2016). Protein enriched pasta: structure and digestibility of its protein Food & Function. 31p.
15. Mabossy-Mobouna G. (2017). Caractérisation et valorisation alimentaire des chenilles d’Imbrasia truncata (Aurivillius, 1908) au Congo-Brazzaville. Thèse de Doctorat en Nutrition Humaine, Université Marien Ngouabi, Congo Brazzaville, 171 p.
16. Maseko I., Id T.M., Tesfay S. (2017). African Leafy Vegetables : A review of status. Production and Utilization in South Africa ; 1–16.
17. Miele A., Carbonneau A. et Bouard J., (1996). Évolution des teneurs en proline et en arginine et du total des acides aminés libres au cours de la maturation des baies du Cabernet Sauvignon. J. Int. Sci. Vigne Vin, Nº hors série, 71-74.
18. Miele. A, Carbonneau A et Bouard. J (2000). Composition en acides aminés libres des feuilles et des baies du cépage cabernet sauvignon. J. Int. Sci. Vigne Vin, 34(1): 19-26
19. Mohammed M. I. and N. Sharif, (2011). Mineral composition of some leafy vegetables consumed in Kano, Nigeria. Nig. J. Basic Appl. Sci., 19: 208-211.
20. Mossé J. (1990). Acides aminés de 16 céréales et protéagineux : variations et clés du calcul de la composition en fonction du taux d’azote des grain(e)s. Conséquences nutritionnelles. INRA Productions Animales, Paris: INRA, 3(2): 103-119.
21. N’Dri, M.T., G.M. Kouamé, E. Konan and D. Traoré(2008). Plantes alimentaires spontanées de la région du Fromager (Centre-Ouest de la Côte d’Ivoire) : flore, habitats et organes consommés. Sci. Nat., 1: 61-70.
22. Nesamvuni,C., N.P. Steyn and M.J. Potgieter, (2001). Nutritional value of wild, leafy plants consumed by the Vhavenda. S. Afr. J. Sci., 97: 51-54.
23. Pierre T. (2019). Les acides aminés, des nutriments essentiels au coeur de notre métier. Ajinomoto Animal Nutrition. 20p.
24. Randrianatoandro V.A. (2010). Identification et caractérisation des plates sources en micronutriments consommés en milieu urbain (Manjakaray, Madagascar) : étude de plats à base de légumes-feuilles. Thèse de doctorat en Sciences de la Vie, Option : Biochimie appliquée aux Sciences de l’Alimentation et à la Nutrition, Université d’Anatananarivo, Madagascar, 134 p.
25. Sauvage F.X., Nicol M.Z., Verries C., Sarries J., Pradal M. et Robin J.P. (1993). Acides aminés libres et quelques activités enzimatiques de moûts de raisins mûrs. Analyses statistiques de l'effet variétal. Sci. Alim., 13: 443-462.
26. Stewart G.R. et Lahrer F. (1980). Accumulation of amino acids and related compounds in relation to environmental stress.In : Stumpf P.K. et Conn E.E., eds. The biochemistry of plants. New York, Academic Press, 4: 609-635. 27. Suliburska J., Pawel B. and Anna J. (2014). Changes in mineral status are associated with improvements in insulin sensitivity in obese patients following L-arginine supplementation. Eur J Nutr. 53(2): 387-93
28. UNICEF. 2012. Committing to Child Survival : A Promise Renewed. 40p.
29. Wu G., Sidney M. Morris Jr. (1998). Arginine metabolism : nitric oxide and beyon, Biochem J. 336: 1-17.
30. Yiridoe E.K. and V.M. Anchirinah, (2005). Garden production systems and food security in Ghana:Characteristics of traditional knowledge and management systems. Renew. Agric. Food Syst., 20: 168-180.
31. Zarkadas, C.G., Yu, Z. & Burrows, V.D. (1995). Protein quality of three new Canadian-developed naked oat cultivars using amino acid compositional data. J. Agri. Food Chem., 43: 415-421.
32. Zoro A.F., Zoue L.T., Kra A.K., Yepie A.E., Niamke S.L(2013). An Overview of Nutritive Potential of Leafy Vegetables Consumed in Western Côte d’Ivoire. Pakistan J. Nutr., 12: 949.956
Published
2022-11-30
How to Cite
Armel Fabrice, Z., Abdoulaye, T., & Kouamé Appolinaire, K. (2022). Amino Acids Profile of Five Leafy Vegetables Mainly Consumed in Western Côte d’Ivoire. European Scientific Journal, ESJ, 18(36), 137. https://doi.org/10.19044/esj.2022.v18n36p137
Section
ESJ Natural/Life/Medical Sciences