Effects of Slag-Based Fertilizer to Mitigate Salinity Stress on Greenhouse Durum Wheat (Triticum Durum Desf.) Cultivars
Abstract
For a modern agricultural, the search for sustainable practices to increase productivity is fundamental. Steel slag have been studied for their potential use in agriculture. These substances present a great possibility of agricultural applications since they are rich in nutrients, which enhance plant uptake. In this regard, the effect of steel slag based-fertilizer was investigated in the greenhouse durum wheat cultivation in pots under salt-stress conditions. Two slag doses: 10 g slag/ kg soil (D1) and 20 g slag/ kg soil (D2) were evaluated under no salt-stress (0 mM NaCl) and salt-stress conditions (100 mM NaCl) for salinity stress mitigation. Morpho-physiological and biochemical parameters of wheat were measured and compared to the different treatments. Wheat exposure to salinity decreased its biomass, stomatal conductance, efficiency of photosystem II, protein content and increased total soluble sugars, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. Amended plants with 10 g slag/ kg soil (D1), led to a significant improve in biomass with an increase of shoot and root dry weights (133% and 400% respectively), stomatal conductance (22 %), soluble sugars (14 %) and protein content (158%) under salinity conditions as compared to the control treatment 0 g slag/ kg soil (C), indicating a positive influence on durum wheat plants. However, soil enrichment with 20 g slag/ kg soil (D2) decreased plant growth parameters and presented the highest levels of H2O2 and MDA contents compared to the control and treatment D1 after three months of cultivation under salt-stress. This study supports the hypothesis of the application of slag at lower dose improve productivity of durum wheat and mitigate salinity stress.
Downloads
Metrics
References
2. Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front. Plant Sci. 6: 868. DOI: 10.3389/fpls.2015.00868
3. Alqarawi A.A., Abd Allah E.F., Hashem A. (2014). Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra Aphylla Forssk. J. Plant Interact. 9: 802–810. https://doi.org/10.1080/17429145.2014.949886
4. A Murkute, A., Sharma, S., & K Singh, S. (2018). Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Horticultural Science, 33(No. 2), 70–76. https://doi.org/10.17221/3742-hortsci
5. Ait-El-Mokhtar, M., Fakhech, A., Ben-Laouane, R., Anli, M., Boutasknit, A., Ait-Rahou, Y., Wahbi, S., Meddich, A. (2022). Compost as an eco-friendly alternative to mitigate salt-induced effects on growth, nutritional, physiological and biochemical responses of date palm. International Journal of Recycling of Organic Waste in Agriculture 11, 85–100. https://doi.org/10.30486/IJROWA.2021.1927528.1233.
6. Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, Ait Chitt M, Oufdou K, Mitsui T, Hafidi M, Meddich A. (2020). Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. Front. Plant Sci 11. 516818. doi: 10.3389/fpls.2020.516818
7. Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2), 95–96. https://doi.org/10.1007/s42398-019-00078-w
8. Altland JE, Zellner W, Locke JC. (2015). Substrate pH and Butterfly Bush Response to Dolomitic Lime or Steel Slag Amendment. Journal of Environmental Horticulture 33. 89–95. doi: 10.24266/0738-2898-33.2.89
9. Baraldi, R., Przybysz, A., Facini, O., Pierdonà, L., Carriero, G., Bertazza, G., Neri, L. (2019). Impact of drought and salinity on sweetgum tree (Liquidambar styraciflua L.): Understanding tree ecophysiological responses in the urban context. Forests 10, 1032. https://doi.org/10.3390/f10111032.
10. Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1), 1–19. https://doi.org/10.1038/s41598-020-73489-z
11. Begum, N., Ahanger, M.A., Zhang, L. (2020). AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environmental and Experimental Botany 176, 104088. https://doi.org/10.1016/j.envexpbot.2020.104088.
12. Ben Laouane, R., Meddich A. Bechtaoui N., Oufdou K., Wahbi S. (2019). Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanz. 71 (2): 135-146. DOI: 10.1007/s10343-019-00461-x
13. Bouras, E., Jarlan, L., Khabba, S., Er-Raki, S., Dezetter, A., Sghir, F., & Tramblay, Y. (2019). Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-55251-2
14. Branca, T.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. (2020). Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals 2020, 10, 345. https://doi.org/10.3390/met10030345
15. Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72. 248–254. doi: 10.1016/0003-2697(76)90527-3
16. Cai S, Liu B, Li J, Zhang Y, Zeng Y, Wang Y, Liu T. (2022). Biochemical Analysis and Toxicity Assessment Utilization of Argon Oxygen Decarbonization Slag as a Mineral Fertilizer for Tall Fescue (Festuca arundinacea Schreb) Planting. Sustainability 14. 9286. doi: 10.3390/su14159286
17. Chen D, Meng Z, Chen Y (2019) Toxicity assessment of molybdenum slag as a mineral fertilizer: A case study with pakchoi (Brassica chinensis L.). Chemosphere 217. 816–824. doi: 10.1016/j.chemosphere.2018.10.216
18. Das S, Kim GW, Hwang HY, Verma PP, Kim PJ (2019) Cropping With Slag to Address Soil, Environment, and Food Security. Frontiers in Microbiology 10. doi: 10.3389/fmicb.2019.01320
19. Das, S., Gwon, H. S., Khan, M. I., Jeong, S. T., & Kim, P. J. (2020). Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-63783-1
20. Deus ACF, Bull LT, Corrêa JC, Villas Boas RL. (2014). Nutrient accumulation and biomass production of alfafa after soil amendment with silicates. Revista Ceres 61. 406–413. doi: 10.1590/S0034-737X2014000300016
21. Deus A, Bertani R., Meirelles G, Vidal A, Moreira L, Büll L, Fernandes D. (2018). The Comprehensive Utilization of Steel Slag in Agricultural Soils. Recovery and Utilization of Metallurgical Solid Waste doi: 10.5772/intechopen.81440
22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. (1956). Colorimetric method for determination of sugars and related substances. Anal Biochem 28. 350–356. doi: 10.1021/AC60111A017
23. EL Sabagh, A., Islam, M. S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Hossain, A., Mahboob, W., Iqbal, M. A., Ratnasekera, D., Singhal, R. K., Ahmed, S., Kumari, A., Wasaya, A., Sytar, O., Brestic, M., ÇIG, F., Erman, M., Habib Ur Rahman, M., Arshad, A. (2021). Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 3(July), 1–20. https://doi.org/10.3389/fagro.2021.661932
24. Evelin, H., Devi, T. S., Gupta, S., & Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10(April). https://doi.org/10.3389/fpls.2019.00470
25. Ezquer, I., Salameh, I., Colombo, L., Kalaitzis, P. (2020). Plant Cell Walls Tackling Climate Change: Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. Plants 9, 212. https://doi.org/10.3390/plants9020212.
26. Farooq, M., Romdhane, L., Al Sulti, M.K.R.A., Rehman, A., Al-Busaidi, W.M., Lee, D.J.( 2020). Morphological, physiological and biochemical aspects of osmopriming-induced drought tolerance in lentil. Journal of Agronomy and Crop Science 206, 176–186. https://doi.org/10.1111/jac.12384.
27. FAO, 2021a World food situation. FAO Cereal Supply and Demand Brief. (2021) https://www.fao.org/worldfoodsituation/csdb/en/
28. FAO, 2021b Global Map of Salt Affected Soils (2021). https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/
29. FAOSTAT, 2022a FAOSTAT, Crops. Food and Agriculture Organization of the United Nations, Database on Crops (2022) https://www.fao.org/faostat/en/#data
30. Ghisman, V., Muresan, A. C., Buruiana, D. L., & Axente, E. R. (2022). Waste slag benefits for correction of soil acidity. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-20528-6
31. Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Al Mahmud J, Fujita M, Fotopoulos V. (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9. 681. doi: 10.3390/antiox9080681.
32. Madhava Rao KV and Sresty TVS. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157. 113–128. Doi: 10.1016/S0168-9452(00)00273-9
33. Ghisman, V., Muresan, A. C., Buruiana, D. L., & Axente, E. R. (2022). Waste slag benefits for correction of soil acidity. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-20528-6
34. Islam, Z., Tran, Q. T., Koizumi, S., Kato, F., Ito, K., Araki, K. S., & Kubo, M. (2022). Effect of Steel Slag on Soil Fertility and Plant Growth. Journal of Agricultural Chemistry and Environment, 11(03), 209–221. https://doi.org/10.4236/jacen.2022.113014
35. Liang, H., Shi, Q., Li, X., Gao, P., Feng, D., Zhang, X., Lu, Y., Yan, J., Shen, S., Zhao, J., & Ma, W. (2022). Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress. Horticultural Plant Journal, December. https://doi.org/10.1016/j.hpj.2022.09.003
36. Maccaferri, M., Sanguineti, M. C., Donini, P., & Tuberosa, R. (2003). Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theoretical and Applied Genetics, 107(5), 783–797. https://doi.org/10.1007/s00122-003-1319-8
37. Meddich A, Jaiti F, Bourzik W, El Asli A and Hafidi M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae, 192, 468–474.
38. Negacz, K., Malek, Ž., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203(April). https://doi.org/10.1016/j.jaridenv.2022.104775
39. Ning D, Liang Y, Song A, Duan A, Liu Z. (2016). In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environmental Science and Pollution Research International 23. 23638–23647.doi: 10.1007/s11356-016-7588-y
40. Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075. https://doi.org/10.1007/s11356-014-3739-1
41. Radić, S., Sandev, D., Maldini, K., Vujčić Bok, V., Lepeduš, H., & Domijan, A. M. (2022). Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.). Agronomy, 12(9). https://doi.org/10.3390/agronomy12092218
42. Seal, C. J., Courtin, C. M., Venema, K., & de Vries, J. (2021). Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2742–2768. https://doi.org/10.1111/1541-4337.12728
43. Shafiq, S., Akram, N.A., Ashraf, M., García-Caparrós, P., Ali, O.M., Latef, A.A.H.A. (2021). Influence of Glycine Betaine (Natural and Synthetic) on Growth, Metabolism and Yield Production of Drought-Stressed Maize (Zea mays L.) Plants. Plants 10, 2540. https://doi.org/10.3390/plants10112540.
44. Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291–317. https://doi.org/10.1007/s12571-013-0263-y
45. Siddiqui, M.H., Alamri, S., Alsubaie, Q.D., Ali, H.M., (2020). Melatonin and Gibberellic Acid Promote Growth and Chlorophyll Biosynthesis by Regulating Antioxidant and Methylglyoxal Detoxification System in Tomato Seedlings Under Salinity. Journal of Plant Growth Regulation 39, 1488–1502. https://doi.org/10.1007/s00344-020-10122-3.
46. Thalmann, M., Santelia, D., (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist 214, 943–951. https://doi.org/10.1111/nph.14491.
47. Turki, N., Shehzad, T., Harrabi, M., & Okuno, K. (2023). Science Mapping novel QTLs for tolerance to salt stress at the late vegetative stage in durum wheat ( Triticum durum L .). Journal of King Saud University - Science, 35(2), 102506. https://doi.org/10.1016/j.jksus.2022.102506UN 2017
48. UN DESA U. N. Dep. Econ. Soc. Aff (2017) URL : https://sustainabledevelopment.un.org/sdg12
49. Velikova V, Yordanov I, Edreva A (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151. 59–66. doi: 10. 1016/S0168-9452(99)00197-1
50. WANG, X., & CAI, Q. S. (2006). Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment. Pedosphere, 16(4), 519–524. https://doi.org/10.1016/S1002-0160(06)60083-0
51. Xynias, I. N., Mylonas, I., Korpetis, E. G., & Ninou, E., Tsaballa, A., Avdikos, I.D., & Mavromatis, A.G.(2020). Durum Wheat Breeding in the Mediterranean Region: Current Status and Future Prospects. Agronomy-10(3), 432. https://doi.org/10.3390/agronomy10030432.
52. Yang R, Howe JA, Golden BR (2019) Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). J Agro Crop Sci 205. 353–361. doi: 10.1111/jac.12327
53. Zahra, N., Al Hinai, M. S., Hafeez, M. B., Rehman, A., Wahid, A., Siddique, K. H. M., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178(March), 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003
54. Zhu, D., Luo, F., Zou, R., Liu, J., & Yan, Y. (2021). Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Journal of Proteomics, 234(August 2020), 104097. https://doi.org/10.1016/j.jprot.2020.104097
Copyright (c) 2023 Farid Errouh, Abdelhamid Aouabe, Ayoub Sadouki, Hassan Chagiri, Hicham Khalisse, Brahim Oudra, Julio Cesar Rodriguez, Salah Er-Raki, Abdelilah Meddich
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.